

NOTES

All site dimensions are to outside cladding.

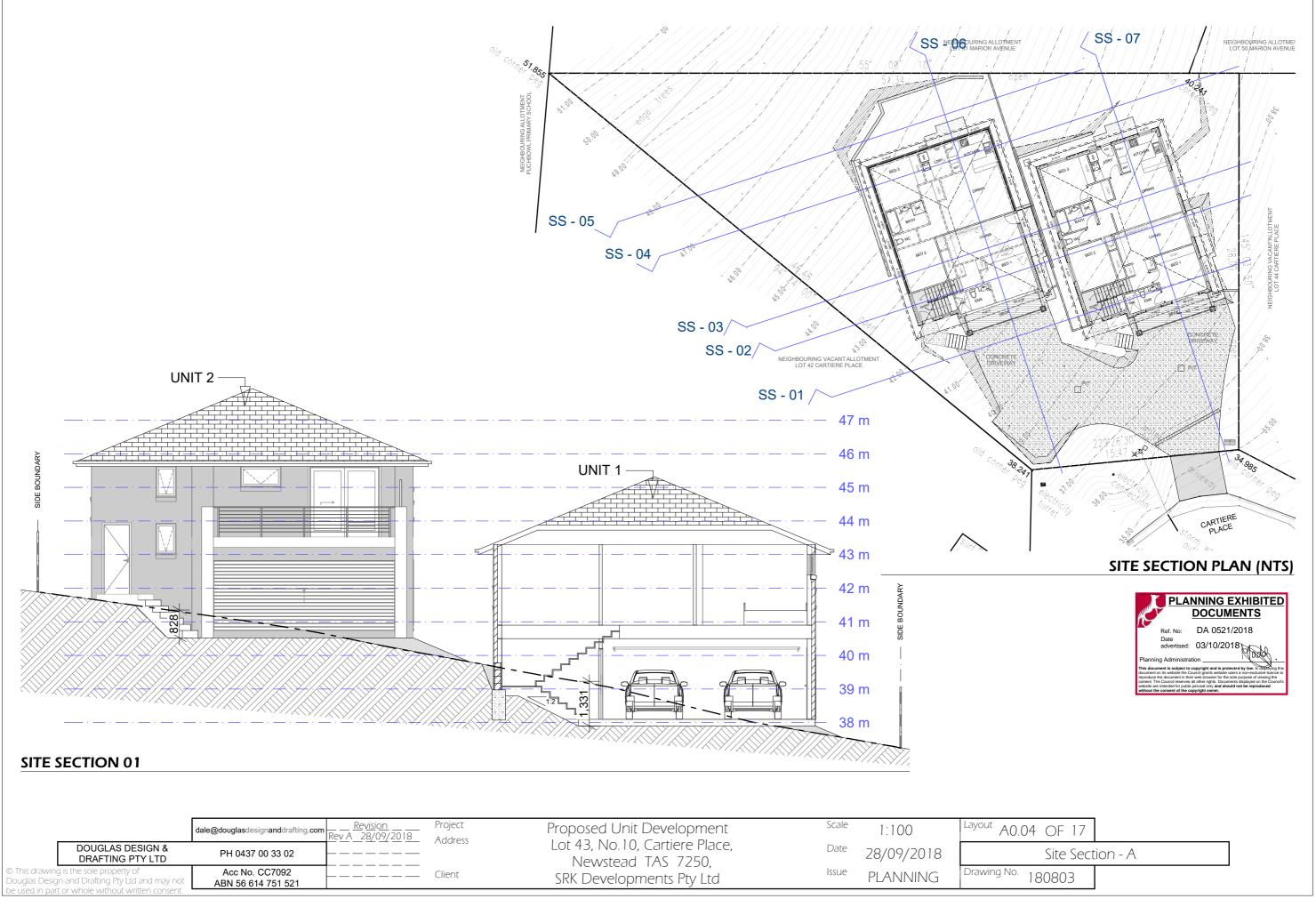
Downpipes are to be connected to the SW system as soon as the roof is installed.

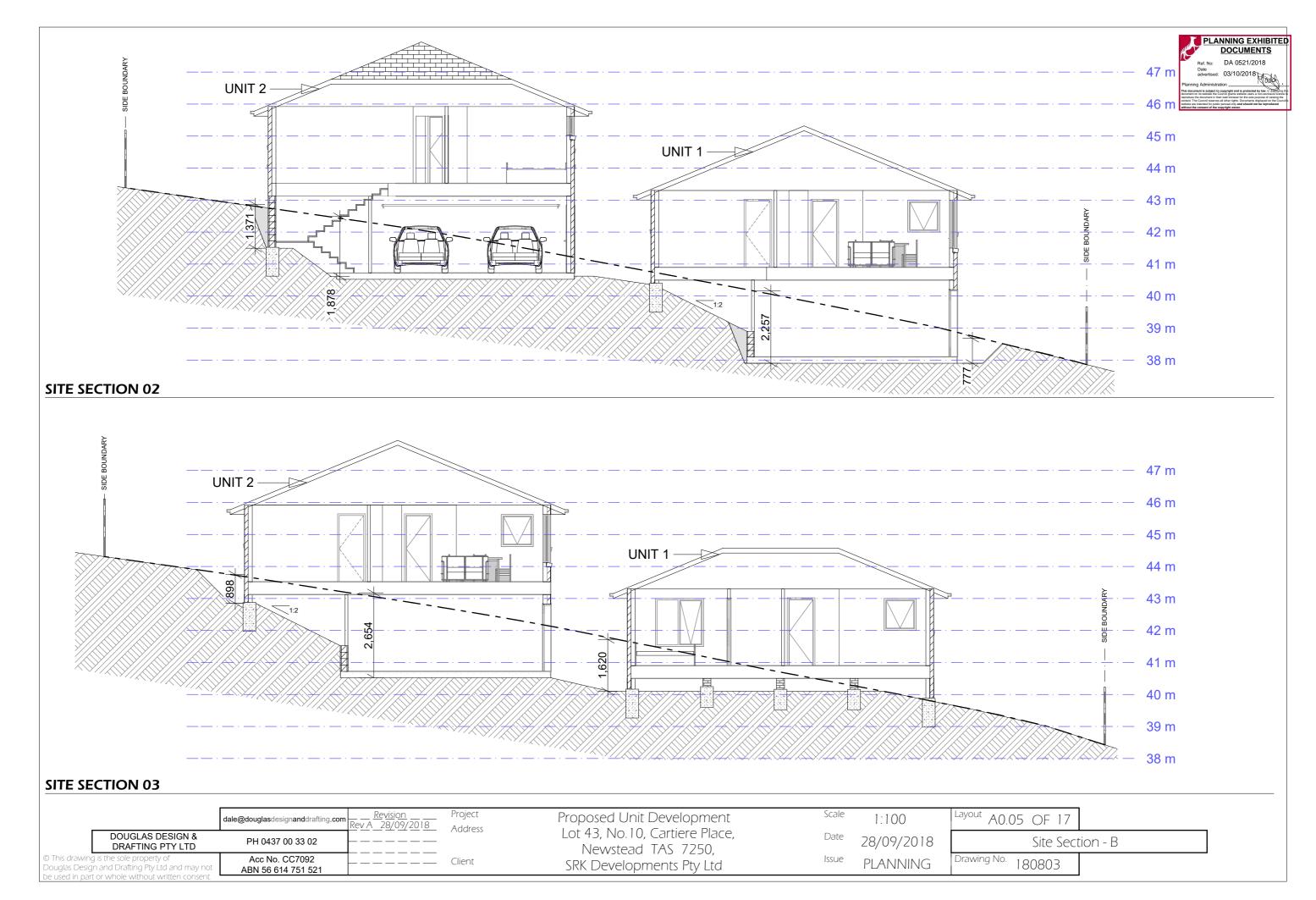
Areas requiring sub soil drainage to be installed and connected prior to building footing excavations.

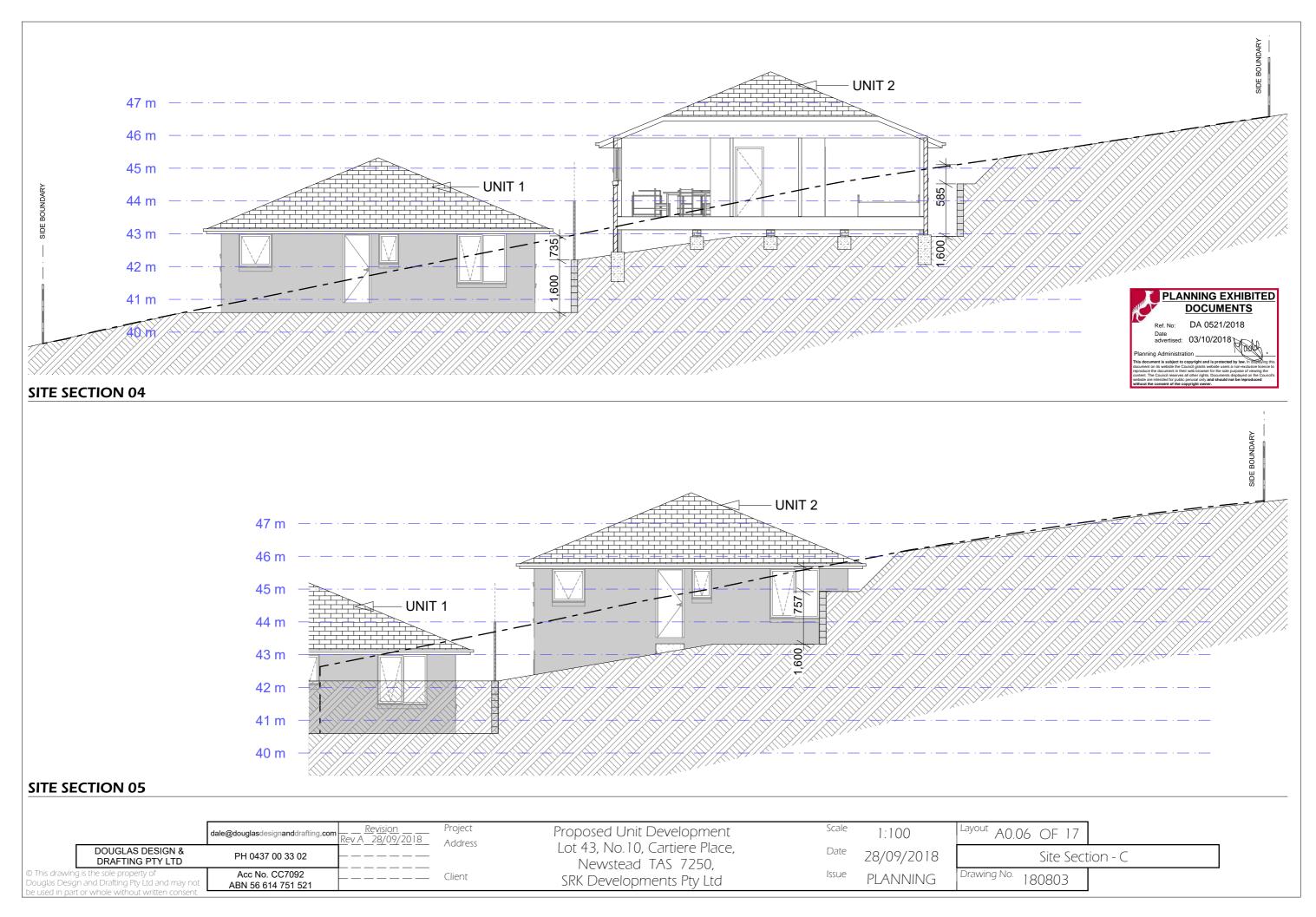
Every effort must be made to prevent sediment washing from site. Install sediment fencing where stockpiling fill or exposing susceptible excavations. Vehicle movement from site must be minimised to prevent soil / debris from entering the roadway.

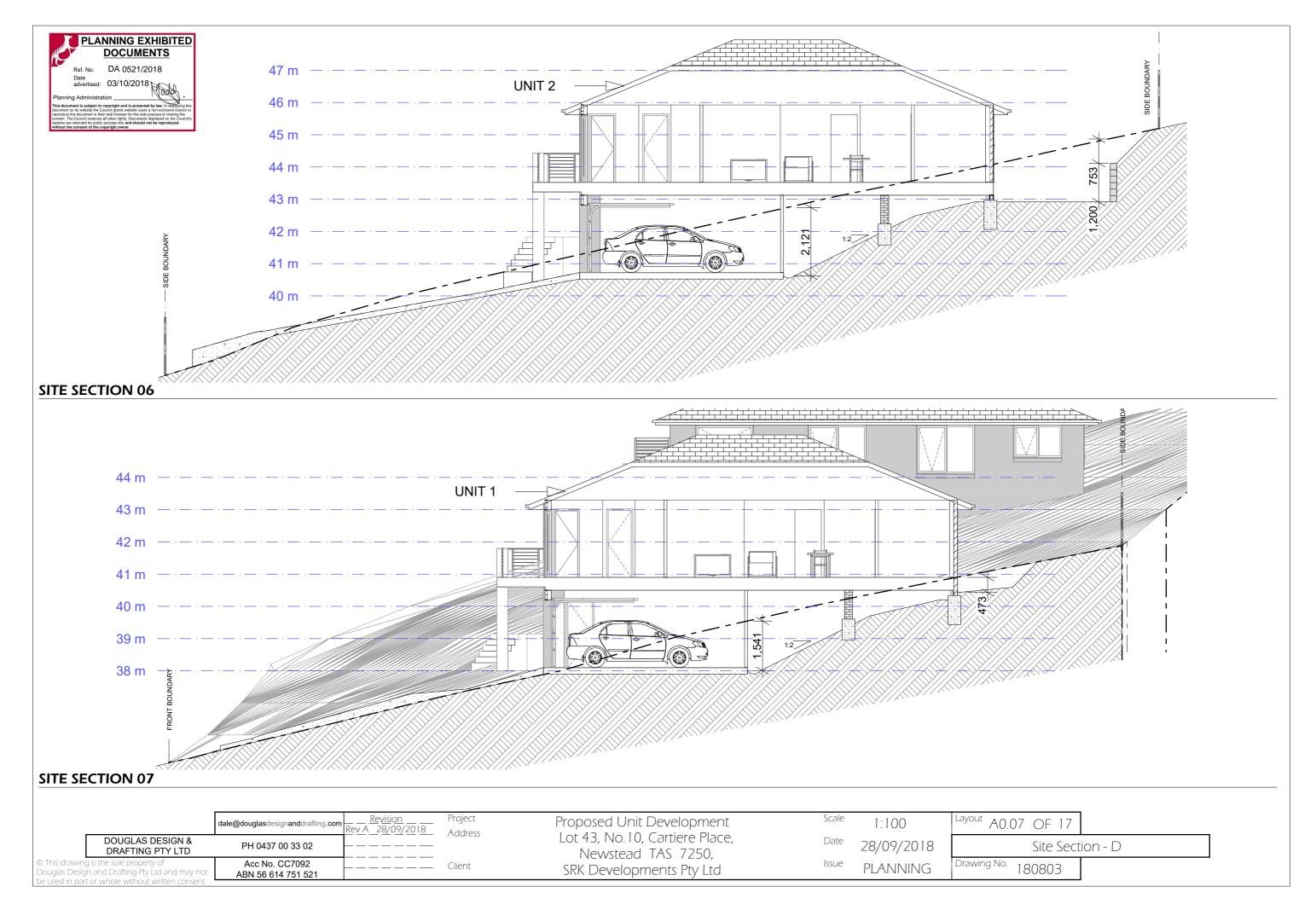
Builder to ensure all required protection works are in place to protect adjoining property from potential damage.

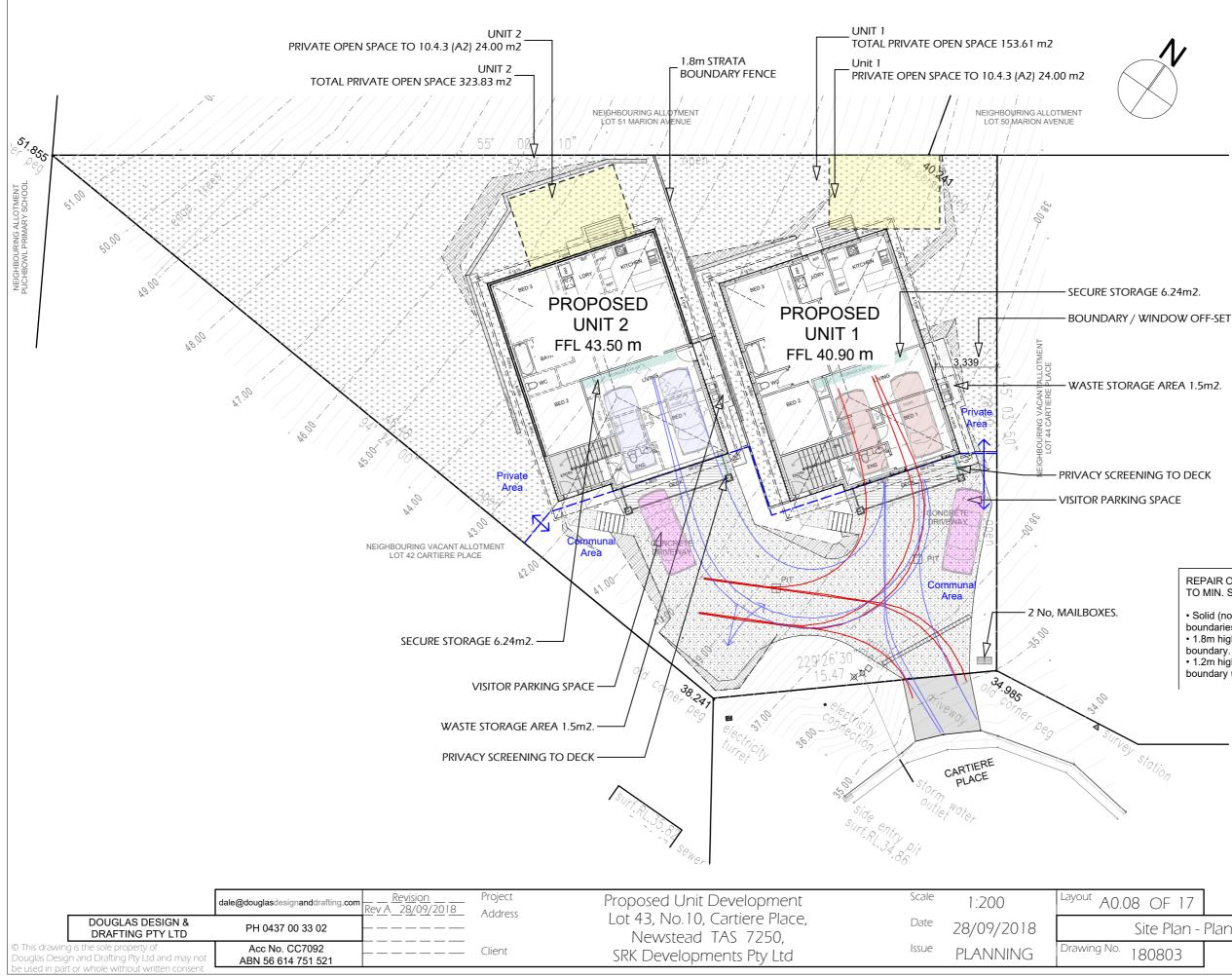
Earthworks to comply with BCA Part 3.1, care should be taken when exposing unprotected embankments and when in close proximity to adjoining property. These and general earthworks are to be in compliance with the BCA and any Local Council requirements and Regulations.

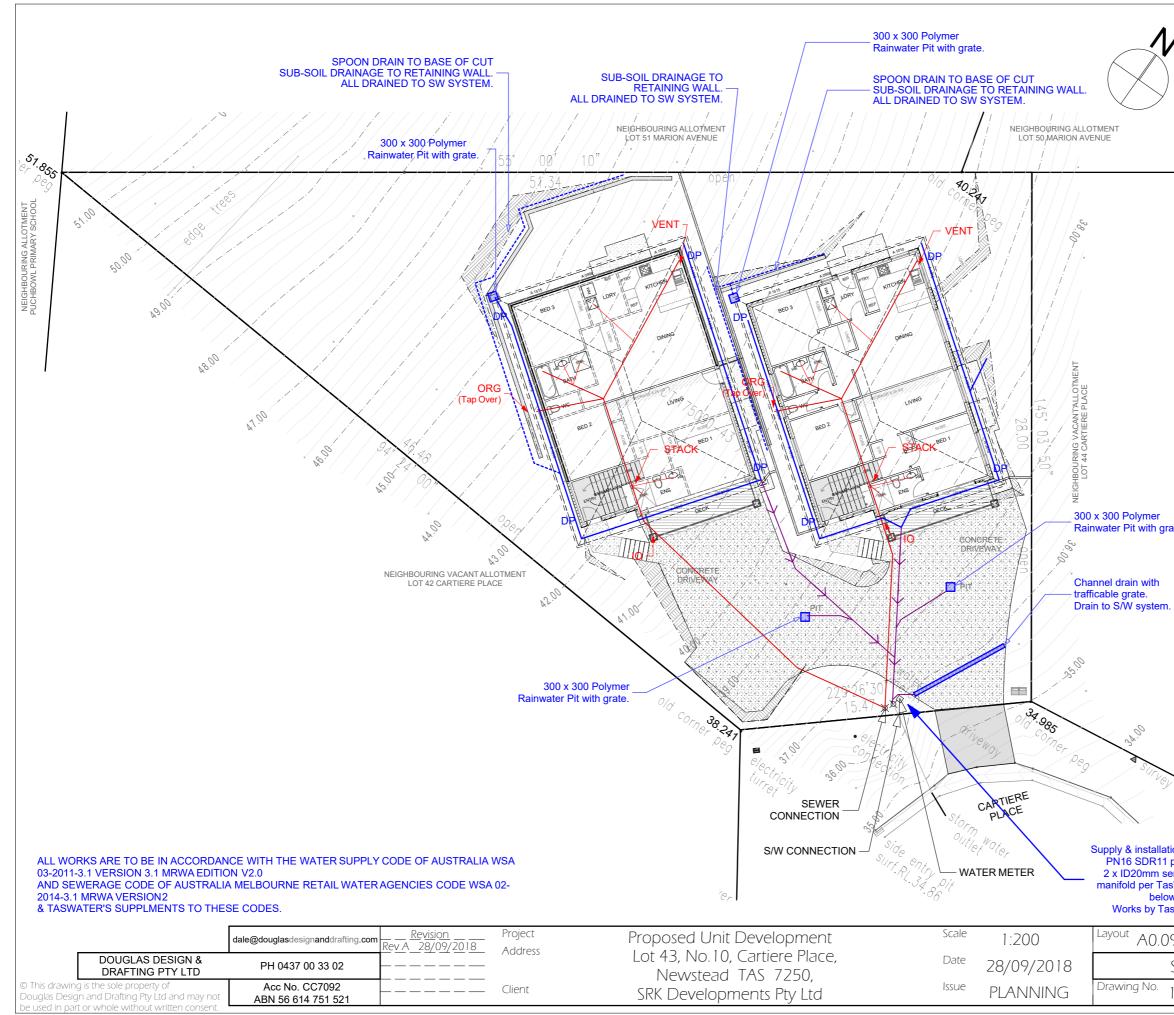

External door thresholds to have a nominal 150 -180mm step where required. A measurement of 230mm or larger will require compliant "stairs" to BCA Part 3.9.1.




- 2.3m / 9m (14°)


CV	-	
	Stor;	
	"On	


0.03 OF 17	
Site F	Plan
^{).} 180803	
	,

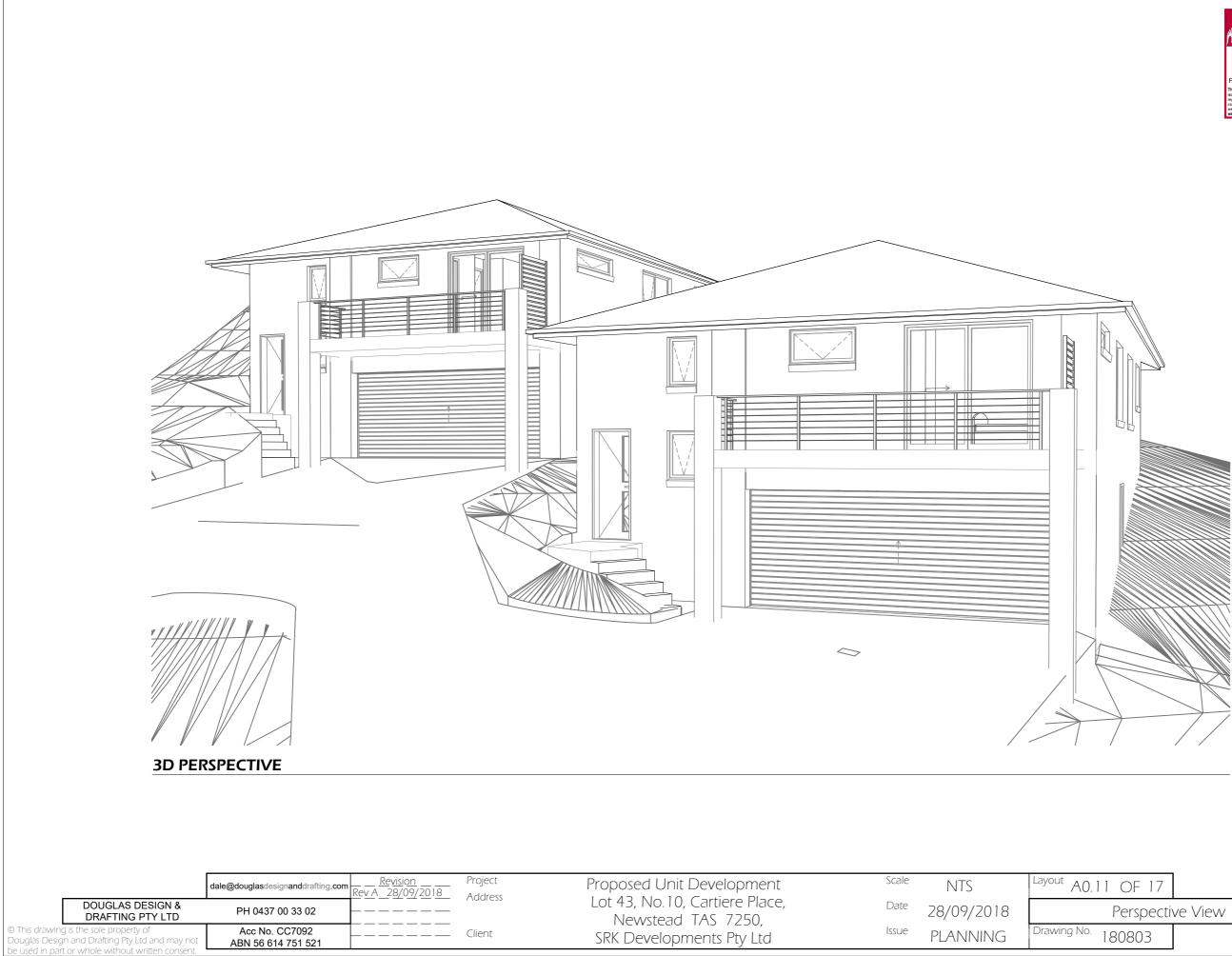


FENCING

REPAIR OR REINSTATE ALL BOUNDARY FENCING TO MIN. STANDARD.

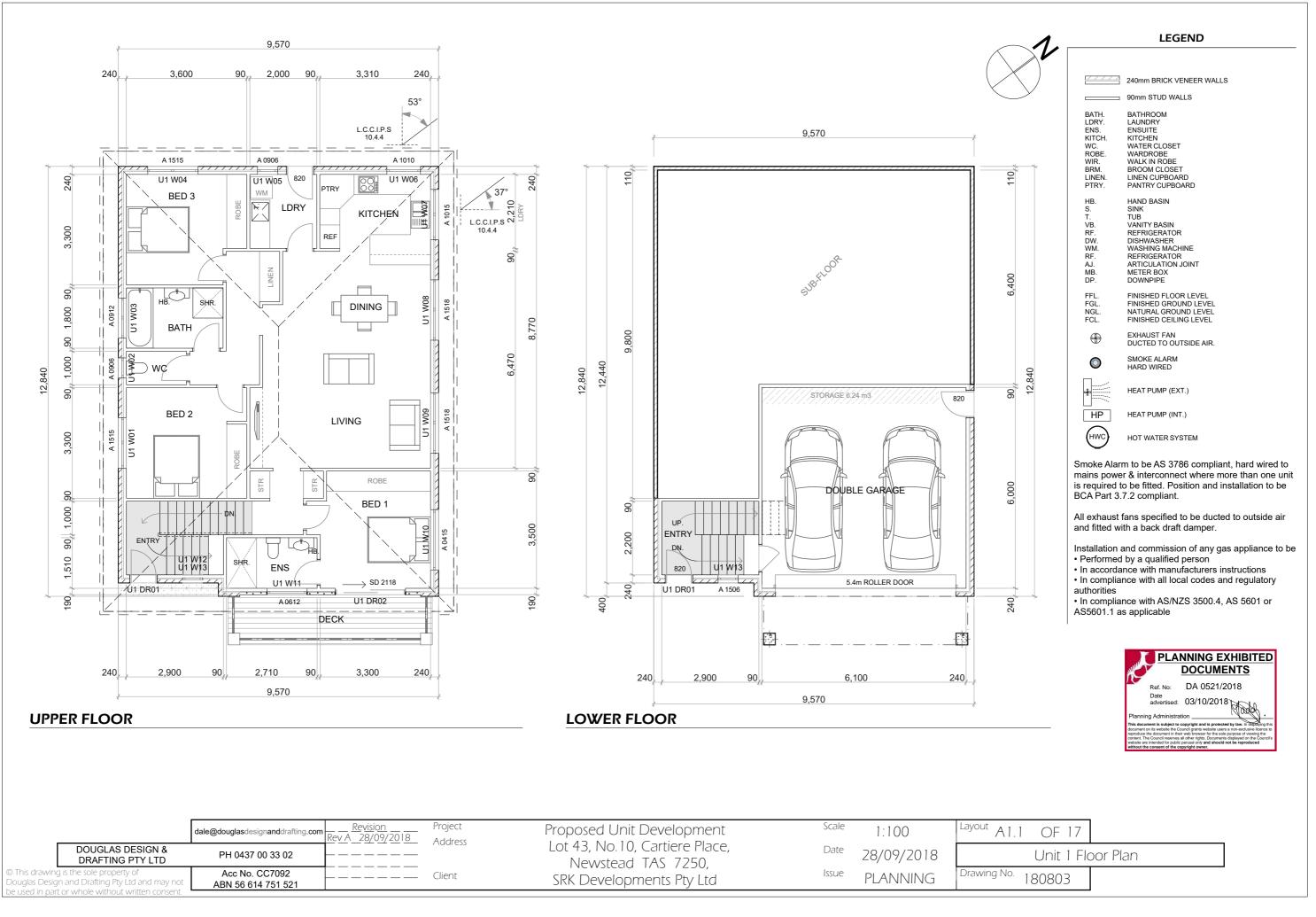
· Solid (no gap) fencing to be provided to side and rear boundaries • 1.8m high from highest point of either side of the boundary. • 1.2m high from highest point of either side of the boundary within 4.5m of frontage.

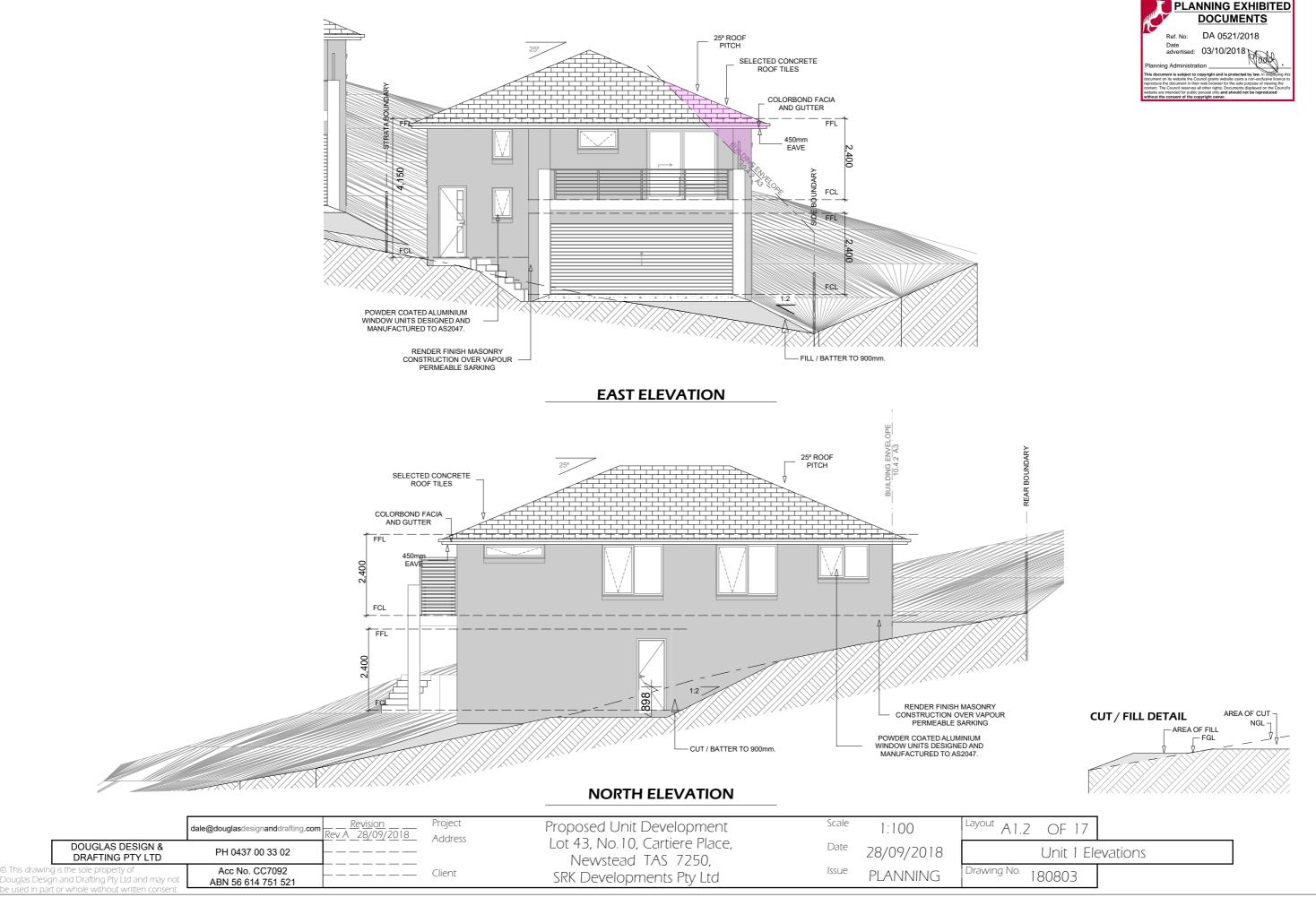
Site Plan - Planning

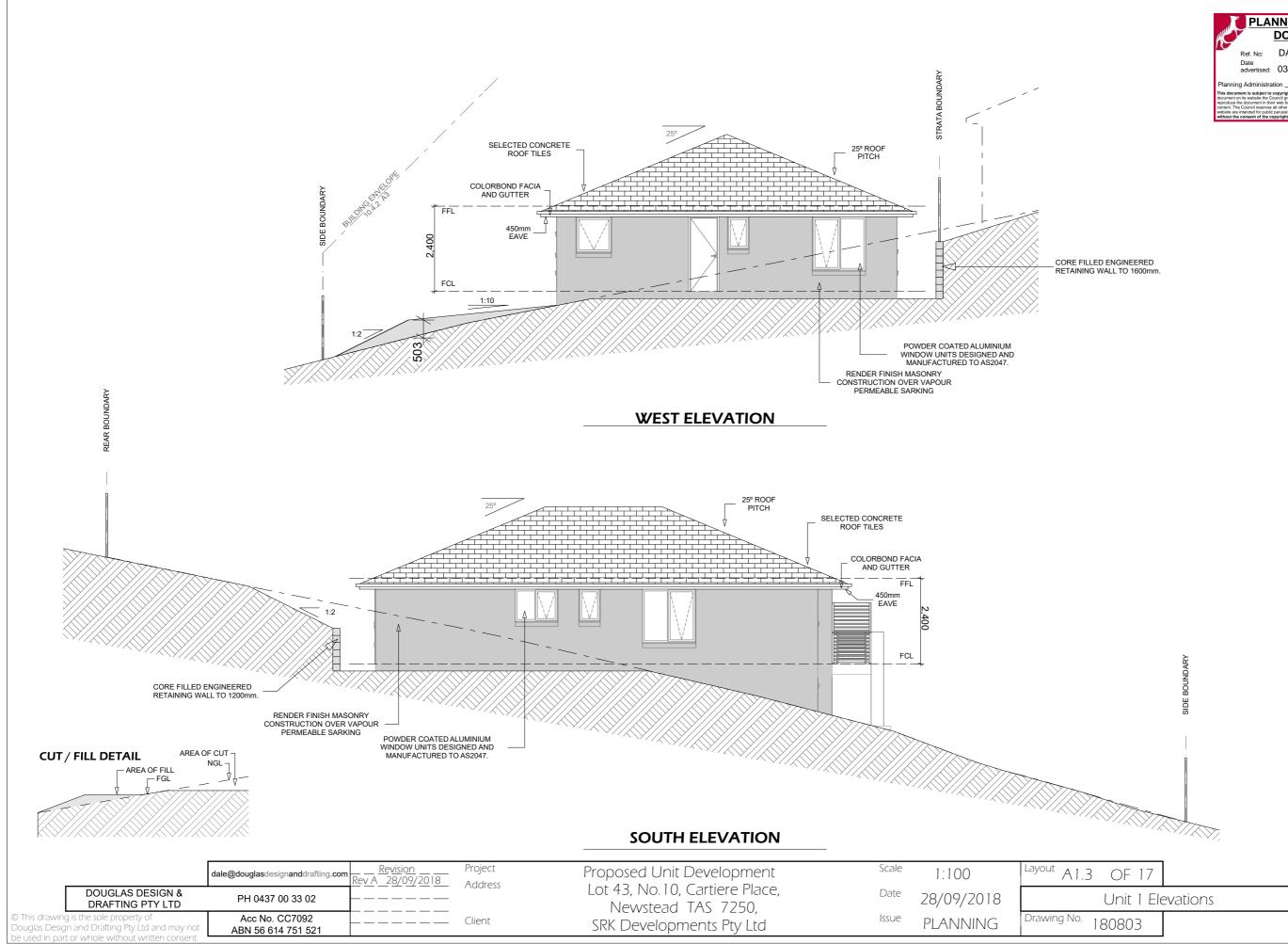


LEGEND

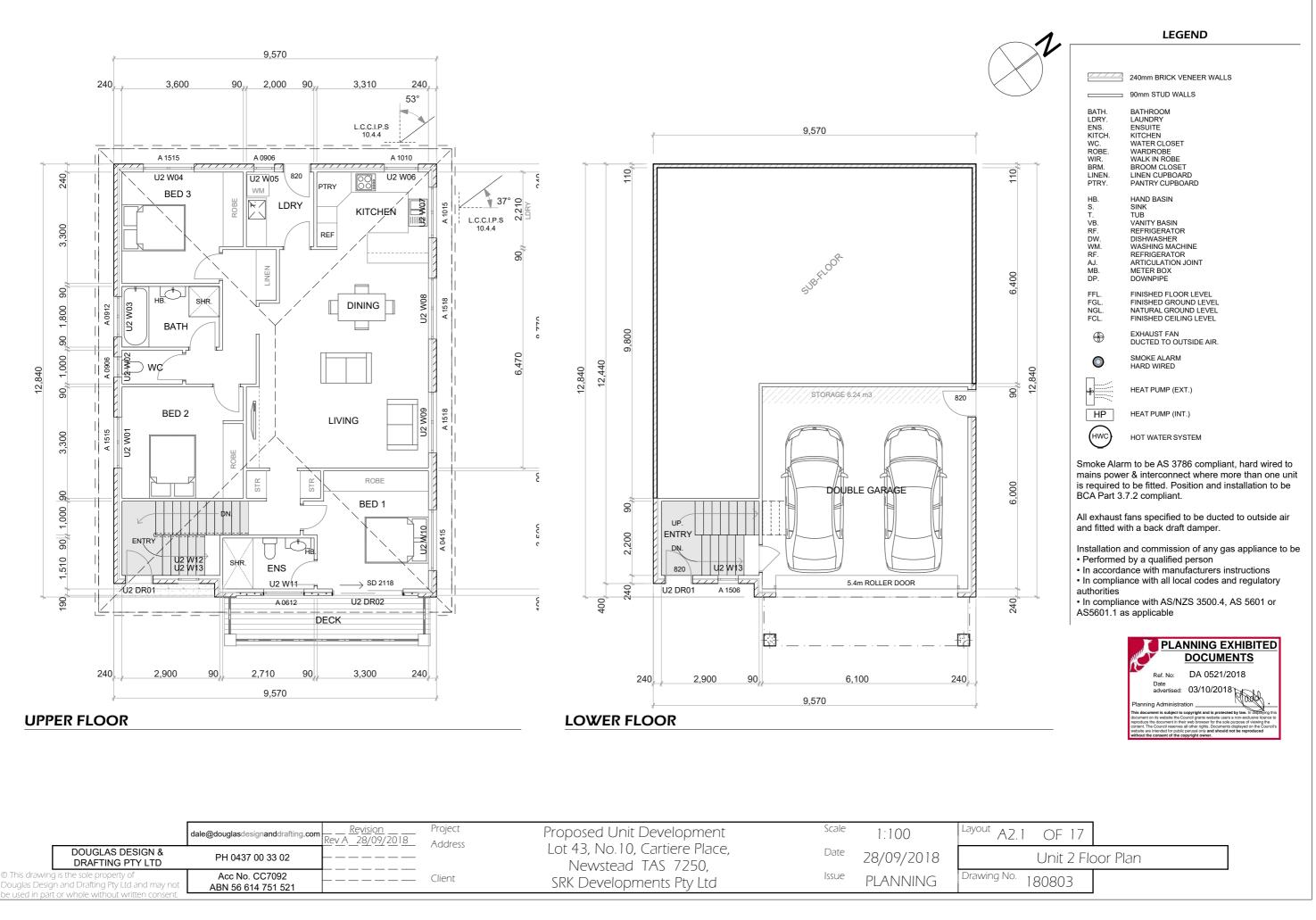
1					
/	HB. S. T. VB.	HAND BAS SINK TUB VANITY BA			
	RF. DW. WM.	REFRIGEF DISHWASI WASHING	HER		
	RF. AJ.	REFRIGER ARTICULA	RATOR TION JOINT		
	MB. DP.	METER BO			
_	FFL. FGL. NGL. FCL.	FINISHED NATURAL	FLOOR LEVEL GROUND LEVEL GROUND LEVEL CEILING LEVEL		
		n Class 6 UP n. 1 in 100 gra	VC Storm wate ade.	er drain to	
		nm Class 6 Ul n. 1 in 100 gra	PVC Storm wa ade.	ter drain to	
		nm Class 6 Ul n 1 in 60 grad	PVC Sewer dra le	ain	
	DP	00	Downpipe con	nected to	
	applianc	e to be	nission of any g	jas	
			nanufacturers		
	 In com 		all local codes a	and	
	• In com	pliance with A	S/NZS 3500.4 as applicable	,	
	All plum Australia	bing works to	comply with th and Local Gov		
ate.	AS/NZS AS/NZS	3500.3:2015 3500.4:2003	ng & Drainage Storm water D /2015 Heated V Housing Insta	Water Services	
	by a lice	nced plumber	lumbing layout r providing all r ive standards.		
	ensure t line of in	his does not e			
				NNING EXHIB	
			Ref. No:	DOCUMENTS	2
			Date advertised:	03/10/2018	de l
			Planning Administrat This document is subject to o document on its website the Co	tion	displaying this sive licence to
Stati			reproduce the document in their content. The Council reserves a website are intended for public without the consent of the co	all other rights. Documents displayed o perusal only and should not be repro	viewing the n the Council's aduced
977	017				
ion of	DN32mm	(ID 25mm) H	DPE		
proper	ty water c	connection wit ter meters on	h		
Wate		l standard pla			
· ·		per expense.			
9 C	F 17				
Site	Plan - I	Plumbing]		
1808	303				

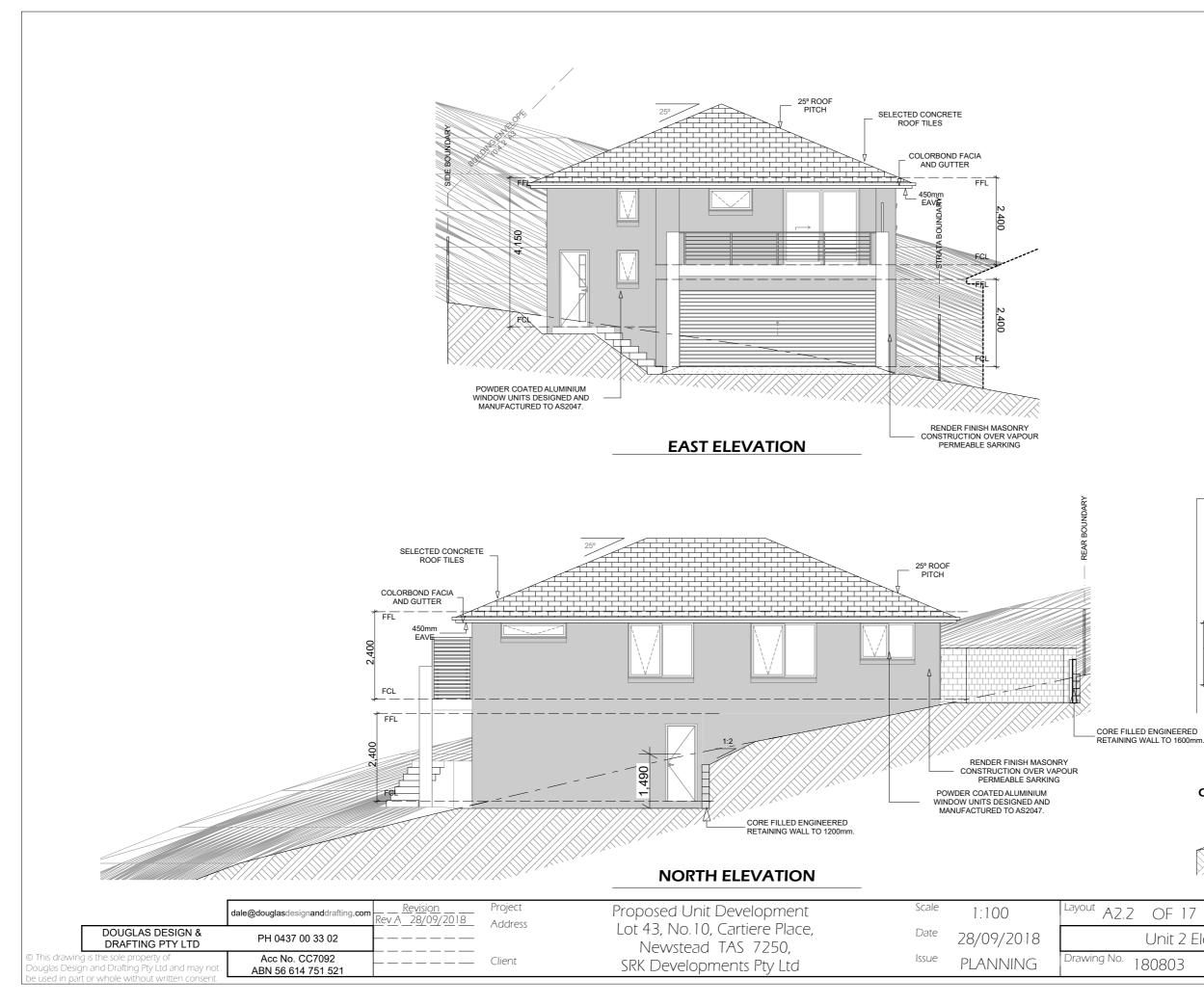


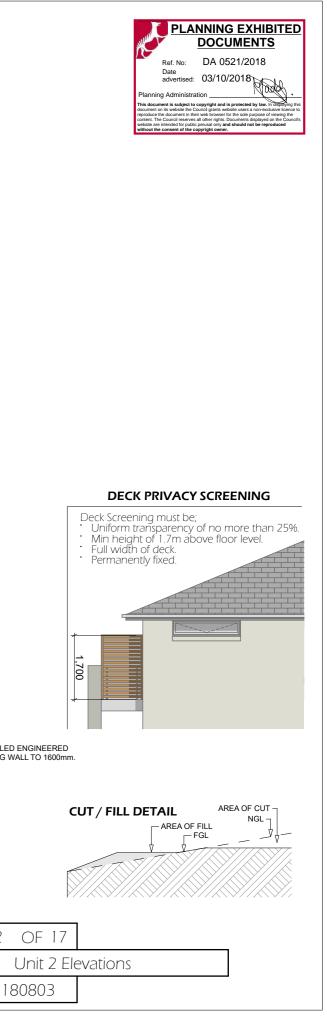

i.			
CY	<u> </u>		
	Stor:		
	"On		

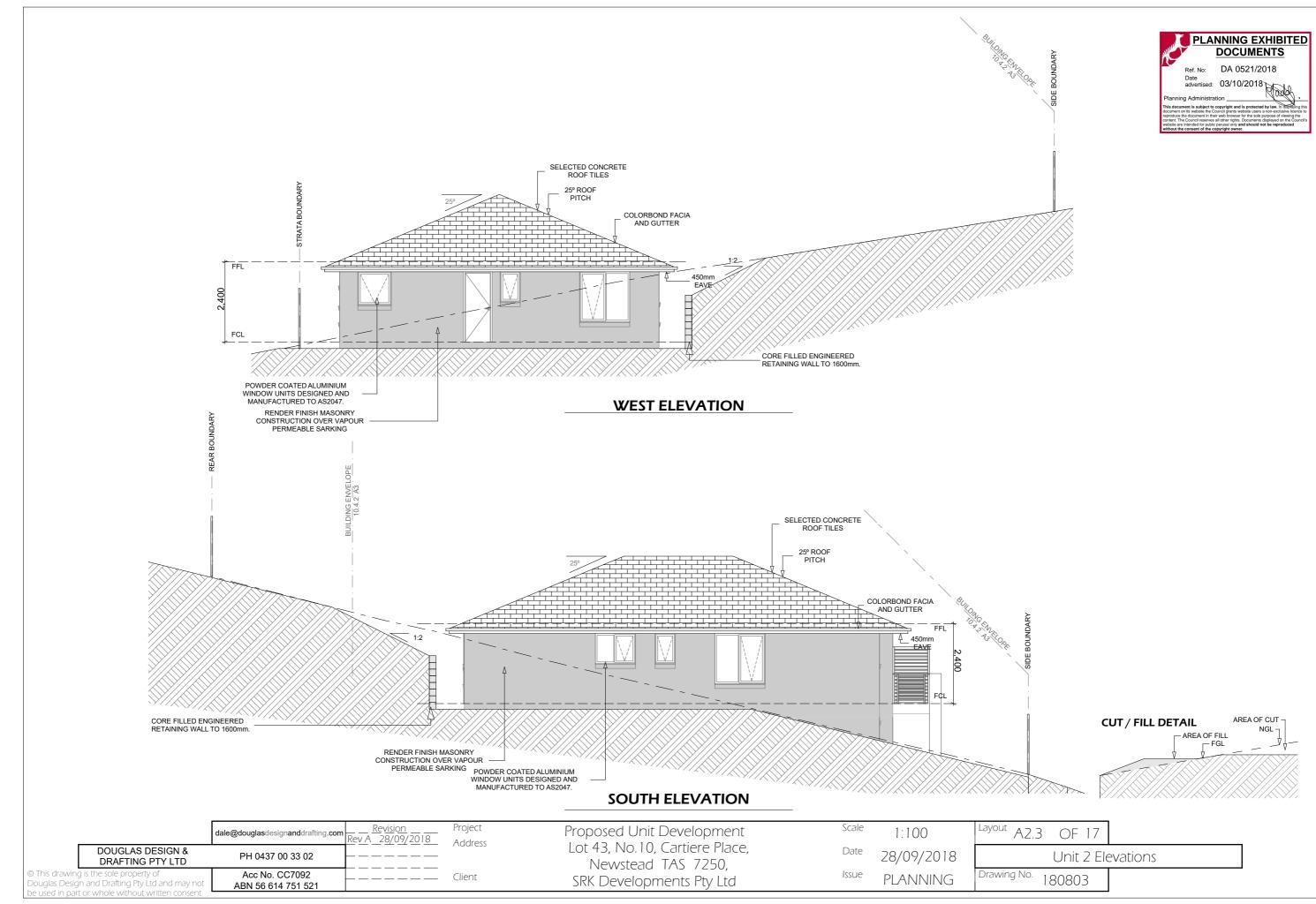


).11 OF 17	
Perspecti	ve View
[.] 180803	









ABN 71162701528

mail@rjkconsultants.com.au

Ref # 18/19 TAS 050

21 November 2018

Attn : Dale Douglas Douglas Design & Drafting PO Box 7708 Launceston TAS 7250

RE : 10 Cartiere Place, Newstead (Lot 43, Title 175090)

Dear Dale,

In regards to issues raised regarding the design at 10 CARTIERE PLACE, NEWSTEAD, I have reviewed the development plans and assessed them, as a suitably qualified person, in accordance with the Australian Geomechanics Society - Practice Notes Guidelines for Landslide Risk Management 2007. I have determined in this assessment that there is suitably low risk of landslide with the proposed development on this site.

We note that landslip was not identified in the William C Cromer report (dated 11 August 2018) as an issue. The site was classified as a class H1 and we have designed according to that classification and also as 2870.

Should the site have had any issues the classification would have been class P. As such we believe the design is sound in meeting the report classification.

Yours faithfully,

RKnightty

Risden Knightley BE Civil FIEAust CPEng NER

LOT 43 (10 CARTIERE PLACE) EASTMANS GREEN SUBDIVISION NEWSTEAD

GEOTECHNICAL SUMMARY

In general accordance with AS1726 (1993) Geotechnical Site Investigations

SITE ("SOIL TEST") CLASSIFICATION

In general accordance with AS2870 (2011) Residential slabs and footings

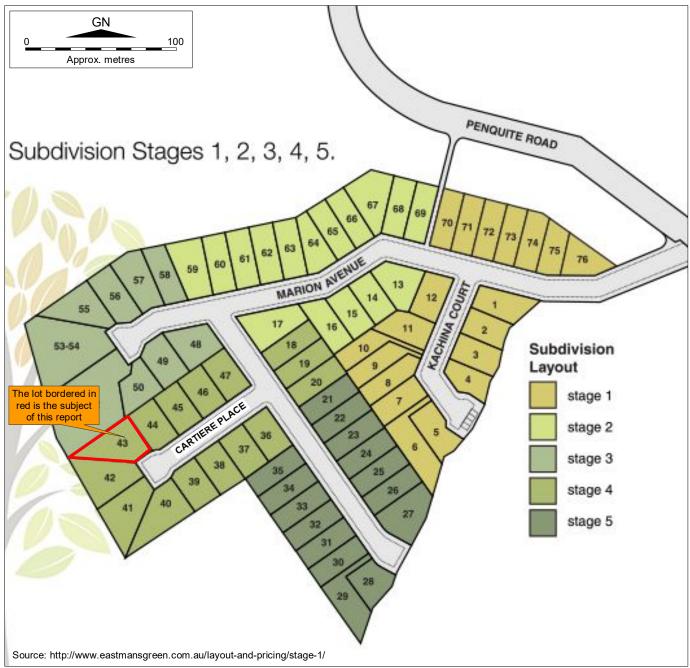
AND

WIND LOAD CLASSIFICATION

In general accordance with AS4055 (2006) Wind loads for housing

ion: 2, Version Date: 02/10/2018

2 11 August 2018



2

The Eastmans Green Subdivision and its 5 stages

3

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.williamccromer.com

Geotechnical summary

Risks associated with a variety of geotechnical issues on and near Lot 43 Eastmans Green Subdivision, Newstead range from Very Low to High. This is a normal situation for many undeveloped hillsides in Launceston. Provided the recommendations in Attachment 1, and in the Table on the next page, are followed, the risks will be reduced to, and will remain mostly in, the Very Low - Low range during and after residential development.

AS2870 Site Classification

In accordance with Australian Standard 2870 (2011) Residential slabs and footings, the area abcd shown on the accompanying site plan (page 6) of Lot 43 Eastmans Green Subdivision, Newstead is classified as Class H1.

Footings for Class H1 sites should be certified by a suitably gualified and experienced engineer. The engineer should visit the site.

AS4055 Wind Classification

In accordance with Australian Standard 4055 (2006) Wind loads for housing, the following wind load classification is made for a house site on Lot 43 Eastmans Green Subdivision, Newstead:

Wind Region	Α
Terrain Category classification	TC3
Topographic classification	T2
Shielding classification	PS
Wind classification	N2
Max. Design Gust Wind Speed	26m/
• ·	40m

m/s [Serviceability limit state (V_h, _s)] **40m/s** [Ultimate limit state (V_h, _u)]

4

W. C. Cromer

I Growen

Principal 11 August 2018

This report is in two parts

PART 1 of this AS2870 assessment is this report accompanied by the following Attachments:

- Attachment 1. Summary of geotechnical issues, consequences and risks to house site, before and after management of the risks
- Attachment 2. Title plan

Attachment 3. Excavation logs of test pits

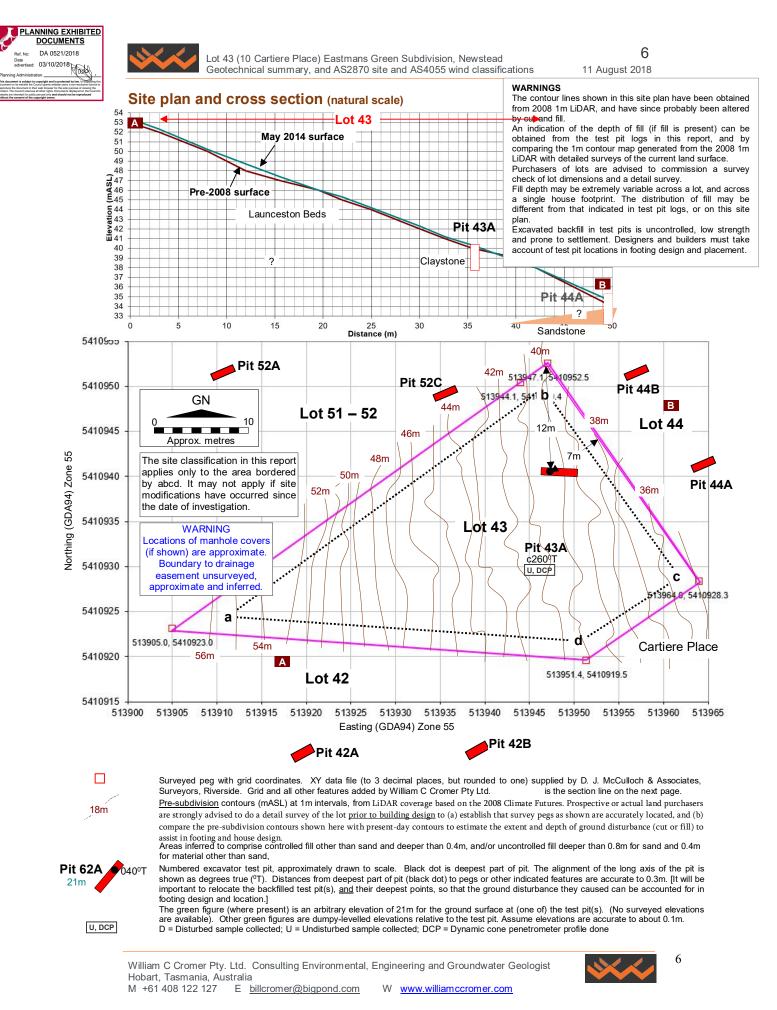
- Attachment 4. Site and test pit photographs
- Attachment 5. Good and poor hillside construction practices
- Attachment 6. Important notes about this report

PART 2 of this AS2870 assessment contains important additional geotechnical information in a separate report entitled Geotechnical Notes to accompany AS2870 ("soil test") reports for individual lots, Eastmans Green Subdivision, Newstead. It is freely available on-line at http://eastmansgreen.com.au/ and http://www.williamccromer.com/ and hard copies are available on request free of charge.

Stakeholders shall consider both Part 1 and Part 2 for the development of this lot.

5 11 August 2018

	al information for this Lot	DOCUMEN
Test pits dug	43A Of the pit and executed materials	Ref. No: DA 0521/20
Photographs	Of the pit and excavated materials	Date advertised: 03/10/2018
Dumpy levelling DCP profiles	None 1: range 0.5 >20 blows/100mm	Planning Administration
Shear vane readings	3; range 185 to >250 kPa	This document is subject to copyright and is protected by document on its website the Council grants website users a n reproduce the document in their web browser for the sole pury produce the document is their web browser for the sole pury
Shrink-swell tests	1. Iss = 3.2 % for clay In pit 43A	content. The Council reserves all other rights. Documents disp website are intended for public perusal only and should not i without the consent of the copyright owner.
Est. ground surface movement	50-550mm (Class H1 based on log of test pit 43A, and the following depth ranges and Iss estimates: 0-0.3m (Iss = 0.5%); $0.5 - 1m$ (Iss = 4.2% as tested in pit 44A); $1 - 2.7m$ (Iss in the range $0.5-1\%$ claystone)	
AS2870 site classification	Class H1 based on shrink-swell testing and test pit profiles	
Dispersion tests	None	_
Fill	0.4m in pit 42A; 0.1m in pit 42B; 0.3m in pit 43A; 0.1m in pit 44Al 0.5m in pit 44B; 0.3m in pit 52C; expect no more than about 0.5m over lot.	_
Soils Geology	Absent; previously stripped from lot. Launceston Beds: weakly consolidated Tertiary claystone in pit 43A;	-
Groundwater	sandstone in pits 44A and 44B None encountered	_
Subsurface conditions	Expect claystone lower part of lot, and weakly cemented sandstone upper part; latter with colluvium?	-
	Assume moderately reactive clays present over lot. Bearing capacities variable across lot (see DCP profiles on test pit logs). May be locally inadequate in colluvium? on higher parts of lot; generally adequate on lower parts.	_
	Risk of settlement low	
	Risk of slope instability low to moderate .See Attachment 1.]
	Recommendations	7
General	Adopt good hillside construction practices (Attachment 5). Keep records/photographs of all construction stages (Attachment 6).	-
General	Avoid loading the slope unnecessarily, at all scales. Consider building with flexible, light-weight materials. Ensure upslope surface runoff is diverted from lot by open cut-off drain;	-
Surface drainage	maintain drain.	_
Test pits	Locate backfilled test pit; design footings to avoid it	4
Footings	Piers instead of, or supporting, strip or raft footings, are recommended. All footings should penetrate fill (if present) and will therefore be of variable depth	
Footing target and depth	Recommended target is Tertiary claystone at about 1m at pit 43A, and perhaps weakly cemented sandstone (possibly beneath colluvium) in higher parts. Visually inspect bottom material to ensure target has been reached. Clean base of each footing Surface 1m or so of any pier hole to be lined with double thickness of Fortecon plastic or similar to minimise friction with reactive soil. If concrete-poured, avoid flanging at surface.	
Footings inspection	Engineering inspection desirable; before pouring concrete, and before installation of screw or driven piers	
Excavations	Avoid excavations or minimise height and number. Support all excavations higher than about 0.8m with engineered, drained retaining walls. Construct upslope cut-off drains. All drains to discharge to stormwater system.	
Treatment of fill embankments	Fill embankments should be supported by engineered and drained retaining walls or battered gentler than 1 vertical:2 horizontal (<26 ^o), or both. Avoid using fill as a weight bearing material, unless its placement is controlled using engineering principles	
Access drives	Where the grades of access drives exceed about 15% (8.5°), the access should be constructed with asphalt or concrete surfaces.	
Services	All water and sewer services should be in flexible pipework, laid in trenches aligned up and down the slope as far as possible. All trenches to be backfilled with clayey materials (not screened gravel). Where stormwater or sewer pipes are constructed on grades greater than 15% (8.5°), they should be constructed with anchors to prevent movement down the slope.	
Revegetating	Restrict tree planting or removal. See Attachment 1.	1
Subsurface issues	Contact Bill Cromer (0408 122 127; billcromer@bigpond.com) if unexpected site or subsurface conditions are found. Take photographs of the conditions.	

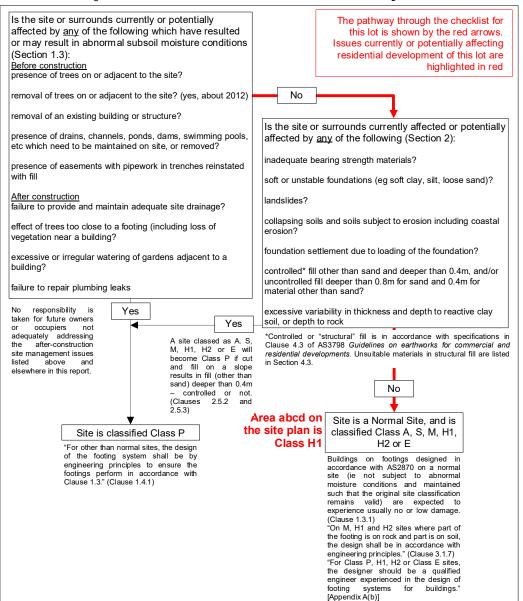

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E

 billcromer@bigpond.com
 W

 www.williamccromer.com



Document Set ID: 3993684 Version: 2, Version Date: 02/10/2018

Checklist for AS2870 site classification

Derived from and in general accordance with AS2870:2011 Residential slabs and footings

Attachment 1

Summary of geotechnical issues, consequences and risks to house site on Lot 43, before and after treatment (management) of the risks

Summary of geotechnical issues, risks and treatments for residential development

			E	Before treatn	nent			After treatme	ent
	Issue #	Issue	Likelihood of occurrence	Consequences to property	Level of risk to property	Recommended risk treatment	Likelihood of occurrence Consequences to property		Level of risk to property
	1	Rotational or translational deep seated earth or debris slide. (Scenario 1 in Figure 4.3 of Attachment 4 in PART 2.)	Dara	Minor to Major	Very Low to	w to		Rare	
	2	Rotational or translational shallow earth or debris slide. (Scenario 2 in Figure 4.3 of Attachment 4 in PART 2.)	Rare	Minor to Medium	Low	None	Unlikely	Major	Low
e instability	3	Translational earth or debris slide, fall or topple: Very small scale; on steep, unsupported (artificial) excavations. (Scenario 3 in Figure 4.3 of Attachment 4 in PART 2.)	Likely to Almost Minor Certain			Control stormwater discharge, Incorporate		Minor	
Landslide/slope instability	4	Rotational or translational earth or debris slide: Very small to small scale; shallow, in fill (eg beneath or next to houses; on the outside of access drives). (Scenario 4 in Figure 4.3 of Attachment 4 in PART 2.)	Possible to Likely	Medium	Moderate to High	good hillside construction practices. Avoid or minimise excavations. Support excavations with engineered, drained retaining walls designed to resist lateral movement. Ensure fill placement is	Unlikely	Insignificant to Minor	Very Low to Low
	5	Earth or debris flow: Very small to small scale; shallow; in soil and/or uncontrolled fill. (Scenario 5 in Figure 4.3 of Attachment 4 in PART 2.)	Unlikely	Minor	Low	controlled, with appropriate batter angles or drained support. See Attachment 5.		Minor	Low
	6	Soil creep. (Scenario 6 in Figure 4.3 of Attachment 4 in PART 2.)					Rare		Very low

8

iummary of geotechnical issues (continued)

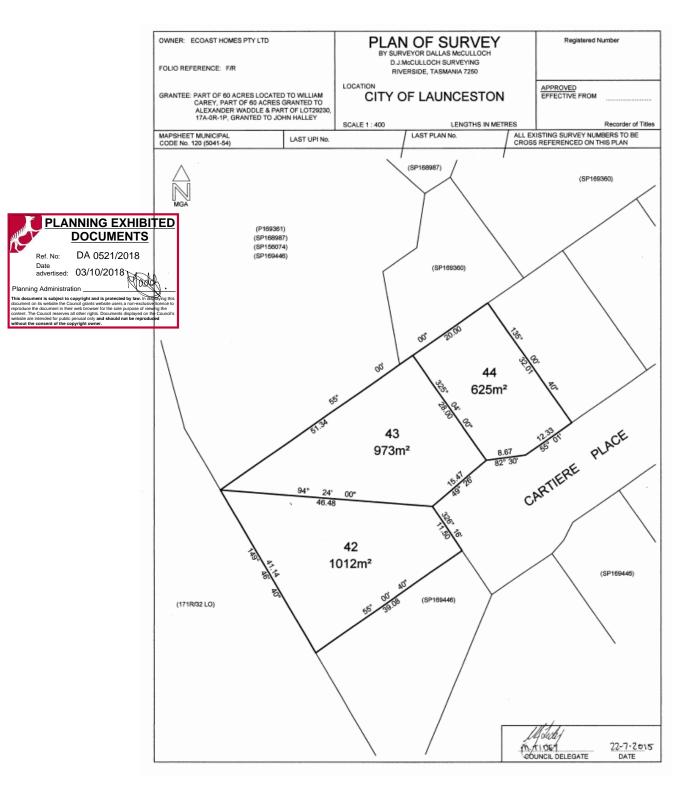
		B	efore treatr	nent		After treatment				
Issue #	lssue	Likelihood of occurrence	Consequences to property	Level of risk to property	Recommended risk treatment	Likelihood of occurrence	Consequences to property	Level of risk to property		
7	Surface soil erosion	Possible	Minor	Moderate	As for Issues 2-6. Revegetate (but no large trees close to house (see below)					
8	Tunnel erosion (dispersive soils)	Rare			As for Issue 2. Revegetate (but no large trees close to house (see below)					
9	Low strength materials (eg uncontrolled fill, soft soils)	Unlikely		Low	Design footing apprpriate to site classificaton. Pier all footings for house through any fill identified during construction. Refer to accompanying site plan.	Unlikely	Minor	Low		
10	Foundation movement due to reactive or unstable soils	Likely	Medium	High	As for Issue 9 and 11. Control drainage. Avoid ponding of water against buildings. Avoid gardens adjacent to building; Do not overwater. Repair plumbing leaks promptly.					
11	Foundation movement due to tree removal or planting	Likely			Restrict tree planting to (and tree removal from) a distance from the house of 1.5x, 1x and 0.75x mature tree height for Class P, (H1, H2) and M sites respectively					
	Restricted surface drainage	Likely	Minor	Moderate	Divert surface drainage away from buildings to reticulated system	Possible	Insignif	Very Low		
13	Flooding or waterlogging Shallow groundwater seepages	Unlikely	Medium	Low	As for Issues 10 and 12 Divert seepages with cut- off drains behind retaining walls, or (if practicable) in herring bone alignment diagonally down slope, away from buildings	Unlikely	Minor	Low		
15	Site contamination from previous activities		Minor to Medium		Visual examination during construction. Testing and/or removal of suspect materials		Minor to Medium			
16	Earthquake risk	Almost certain (mag. <5); Likely (mag. >5)	Insignificant to Medium	Low to Moderate	Accept risk. Risk applies to all houses to varying degrees depending on quake intensity, geology and house construction	Almost certain (mag. <5); Likely (mag. >5)	Insignif to Medium	Low to Moderate		

1. The assessments are unavoidably subjective to varying degrees.

2. Further reading: AGS (2007c). Practice Notes Guidelines for Landslide Risk Management. Australian Geomechanics Vol 42 No 1 March 2007

9

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

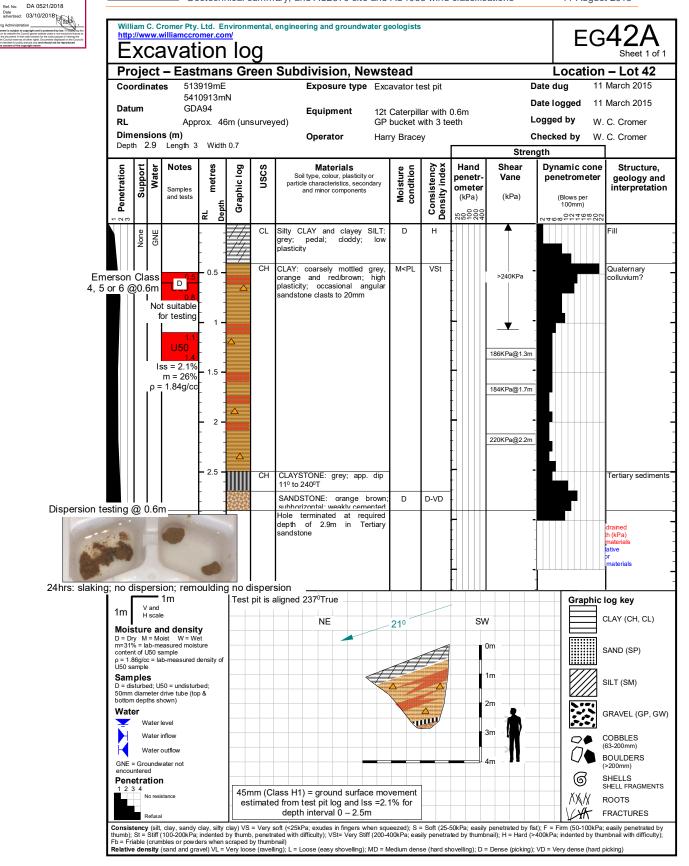

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.williamccromer.com

Attachment 2 Title plan

Attachment 3 Excavation logs of test pits 42A, 42B, 43A, 44A and 44B



 William C Cromer Pty. Ltd.
 Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia
 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>
 W <u>www.williamccromer.com</u>

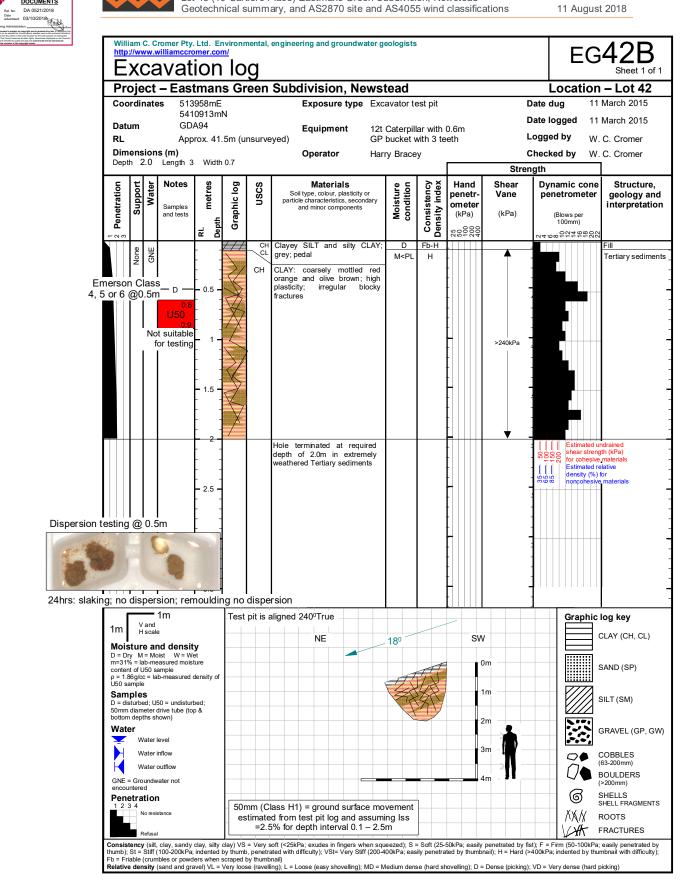
PLANNING EXHIBITED DOCUMENTS Lot 43 (10 Cartiere Place) Eastmans Green Subdivision, Newstead Geotechnical summary, and AS2870 site and AS4055 wind classifications 12 11 August 2018

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.williamccromer.com



PLANNING EXHIBITED

Lot 43 (10 Cartiere Place) Eastmans Green Subdivision, Newstead Geotechnical summary, and AS2870 site and AS4055 wind classifications

13 11 August 2018

William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist Hobart, Tasmania, Australia M +61 408 122 127 E billcromer@bigpond.com W www.williamccromer.com

Lot 43 (10 Cartiere Place) Eastmans Green Subdivision, Newstead Geotechnical summary, and AS2870 site and AS4055 wind classifications

14 11 August 2018

http:	://wv	vw.v	villiamccro avat	omer.co	<u>m/</u>		engineering and groundwater	Jeologists				EG	43A Sheet 1 of 1
						<u> </u>	Subdivision, News	tead				Location	i – Lot 43
Coo	rdir	nate		948mE			Exposure type Ex	cavator to	est pit		Date	edug 26	May 2015
Datu	ım			0944m A94	IN		Equipment 12	Caterpil	ar with	0.6m	Date	elogged 26	May 2015
RL			40.5	ōm (Est	imated)		bucket v			Log	ged by W	C. Cromer
			s (m) Length 2	5 Wio	lth 0.7		Operator Ha	rry Brace	y			-	C. Cromer
			-					1	~ ~		Strength		
Penetration	Support	Water	Notes	metres	Graphic log	nscs	Materials Soil type, colour, plasticity or particle characteristics, secondary	Moisture condition	Consistency Density index	Hand penetr-		ynamic cone penetrometer	
netra	Sup	>	Samples and tests		aphic	D	and minor components	Nois	ity i	ometer (kPa)	(kPa)	(Blows per	interpretation
				RL Depth	0 Ľ			- 0	Cor	222 2000 2200 2200		100mm) 40002446888	
32	Ð	ш				СН	CLAY: black; high plasticity, with		Fb-	-		408666666	FILL
	None	GNE					pebbles, charcoal; cloddy, peda						
						СН	CLAY: pinkish orange mottle with light olive grey; hig		VSt	-			Natural ground Tertiary sediments
				- 0.5 -			plasticity; irregular hackl	v l		-	200kPa@0.5m		rentiary sectiments
			0.6 U50				fractures with some weakl striated surfaces in 3D	;		-	· ·		
			0.9 ss=3.2%				occasional roots; 1cm thic clayey gravel at sharp base	ĸ			180kPa@0.9m		
			m = 31%	- 1-			CLAY and sandy CLAY: olive			-	-		Tertiary claystone
		ρ=	1.84g/cc				grey and orange; blocky fracture with MnO2 on some defec	t			 250kPa@1.3m		
							surfaces; some residual bedding with dip c.7-8° to 100°T			-		Estimated u	
				- 1.5 -							- 66	cohesive ma	aterials
										-	1	density (%)	for
				- 2 -									· ·
										-			
										-			
				- 2.5 -									· ·
										-			
							Hole terminated at required			-			
				- 3 -			depth of 2.8m in Tertiary claystone						· ·
										-			
				- 3.5 -						-	-		· ·
			1m		l,, I								
lm		/and Iscal			Test	pit is a	aligned c260ºTrue					Graphic	log key
Mois			° nd densi	tv			NE				SW		CLAY (CH, CL)
m=319	% = I;	ab-m	pist W = W easured mois					200 -			0m		
o = 1.8	86g/c	c = la	ample ib-measured	density of							0m		SAND (SP)
J50 si Sam								F		050	1m		
50mm	n dian	neter	50 = undistur drive tube (to										SILT (SM)
ootton Wat		ths s	hown)							7	2m		00 M (5) / 5 - 5
Ť		Vater	level		\vdash								GRAVEL (GP, GW)
			inflow						-		-3m -		COBBLES
			outflow vater not								4m -		(63-200mm) BOULDERS
encou Pen	untere	ed											(>200mm)
1 2	34		stance		50	_ 55m	ım (Class H1) = ground surfa		ment es	timated f	rom log of test p		SHELLS SHELL FRAGMENTS
					43A	, and	the following depth ranges a	nd Iss est	imates:	0-0.3m	(Iss = 0.5%); 0.5	- [^^^/X	ROOTS
		Refusa		-1 '*		<u> </u>	4.2% as tested in pit 44A); 1	`					FRACTURES
JIISISt	епсу	r (Silt,	olay, sandy	uay, silty	uay) VS	 very s 	soft (<25kPa; exudes in fingers when so ated with difficulty); VSt= Very Stiff (200	ineezea); S :	- JUIL (25-	JUKPA; easi	y perienated by fist); F	- FIIIII (SU-100KPa	, easily penetrated by

 William C Cromer Pty. Ltd.
 Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia
 M

 M
 +61 408 122 127
 E
 <u>billcromer@bigpond.com</u>
 W
 www.williamccromer.com

15 11 August 2018

William C. Cromer Pty. Ltd. Environmental, engineering and groundwater geologists EG44 Excavation log Sheet 1 of 1 Project – Eastmans Green Subdivision, Newstead Location – Lot 44 26 May 2015 Coordinates 513963mE Exposure type Excavator test pit Date dug 5410944mN Date logged 26 May 2015 Datum GDA94 Equipment 12t Caterpillar with 0.6m GP bucket with 3 teeth Logged by 36.5m (Estimated) W. C. Cromer RL Dimensions (m) Checked by Operator Harry Bracey W. C. Cromer Depth 2.9 Length 2.5 Width 0.7 Strength Consistency Density index Hand Shear Dynamic cone Notes Structure. Water log USCS Materials **Moisture** condition Support metres Penetratior Soil type, colour, plasticity or irticle characteristics, seconda and minor components Vane penetrometer penetr geology and idary Graphic interpretation ometer Samples and tests (kPa) (kPa) (Blows per 100mm) Depth 25 500 200 200 200 2 40002446606 CH CLAY: yellowish orange; high M<PL VSt FILL None GNE plasticity СН M<PL VSt-F Natural ground CLAY: pinkish orange mottled with light olive grey; high plasticity; trace-some sand Tertiary sediments 0.5 172kPa@0.6m lss=4.2% m = 27% 192kPa@1m 1 1.90g/cc >260kPa@1.5m Iss=1.0% 1.5 m = 20% = 2.12g/cc 2 SANDSTONE; orange; weakly D Fb-VD cemented; low rock strength; no dip measurement 2.5 Estimated undrained shear strength (kPa) for cohesive materials Estimated re density (%) for noncohesive m Hole terminated at required depth of 2.9m in Tertiary 3 888 sandstone 3.5 1m Test pit is aligned c220ºTrue Graphic log key V and 1m H scale CLAY (CH, CL) NE SW **Moisture and density** D = Dry M = Moist W = Wet m=31% = lab-measured moisture content of U50 sample p = 1.88g/cc = lab-measured density of U50 sample 170 0m SAND (SP) Samples 1m D = disturbed; U50 = undisturbed; 50mm diameter drive tube (top & bottom depths shown) 150 SILT (SM) 2m Water GRAVEL (GP, GW) Water level Water inflow 3m COBBLES H Water outflow (63-200mm) BOULDERS GNE = Groundwater not encountered 4m (>200mm) Penetration SHELLS SHELL FRAGMENTS ଡ 70mm (Class H2) = ground No resistance surface movement ŇXŃ ROOTS estimated from test pit log <u>L</u>H Refusal and lss results FRACTURES Consistency (silt, clay, sandy clay, silt, clay) VS = Very soft (<25kPa; exudes in fingers when squeezed); S = Soft (25-50kPa; easily penetrated by fist); F = Firm (50-100kPa; easily penetrated by thumb); SI = Siff (100-200kPa; indented by thumb, penetrated with difficulty); VSI= Very Stiff (200-400kPa; easily penetrated by thumbnail); H = Hard (>400kPa; indented by thumbnail) with difficulty); P5 = Firal be (rumbles or powders when screaded by thumbnail) Relative density (sand and gravel) VL = Very loose (ravelling); L = Loose (easy shovelling); MD = Medium dense (hard shovelling); D = Dense (picking); VD = Very dense (hard picking)

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.williamccromer.com

16 11 August 2018

<u>h</u>	ttp:/	/ww	vw.v	romer Pty. villiamccro avat	omer.cor	<u>n/</u>		engineering and groundwater g	eologists						EG	A4B Sheet 1 of 1
							<u> </u>	Subdivision, News	tead						ation	– Lot 44
Coordinates 513957mE Exposure type Excavator test pit Dat											Date			May 2015		
5410954mN													Date	logge	d 28	May 2015
R					A94 1 (Estim	ated)			Caterpill bucket v				Logg	jed by	w.	C. Cromer
				s (m)		,		Operator Ha	ry Brace	у			Chec	ked b	y W.	C. Cromer
D	epth	3	5.3	Length 2	2.5 Wid	th 0.7						Str	ength			
ġ		Ę	Water	Notes	res	log	nscs	Materials Soil type, colour, plasticity or	ion L	Consistency Density index	Han				c cone	
Penetration		Support	Wa	Samples	metres	Graphic log	SN	particle characteristics, secondary and minor components	Moisture condition	iste y in	penet omet	er			meter	geology and interpretation
Pen		"		and tests	RL Depth	Grap			ž S	cons Sons	(kPa)			(Blows) 100m		
- 2					RL Der	Ŭ					25 200 100	4004	04	9802	49862	
		None	GNE				СН	CLAY: yellowish and pinkish orange; high plasticity; trace	M>>PL	S						FILL _
		2						charcoal and timber								-
				0.5	0.5			CLAY: yellowish brown and	M<>PL	VSt			-			Natural ground
				U50				pinkish orange; high plasticity		V31	†	224kPa@0.3	- 7m			Tertiary sediments
		I		ss=3.3%									-			-
				m = 30% 1.82g/cc	- 1-						-	248kPa@1	m			-
				J.							ŧ.		-			-
													-			
					- 1.5 -						┢		-			_
						24	GW	Sandy GRAVEL: pinkish red; nonplastic	М	D-VD	F		_	I Es	timated u	ndrained
											t	>260kPa@1.	8m 50	sh 500 for	ear streng r cohesive	nth (kPa) materials
					- 2 -						┢║		- 88	de de	timated rensity (%)	for
											-			no no	nconesive	materials -
								SANDSTONE; yellowish	D-M	D-VD			1			-
					- 2.5 -			orange; weakly cemented; irregular blocky fracture; low			┢		1			
					- 1			rock strength; no dip			-		-			-
											Ē.		1			-
					- 3-						F		1			-
											+		1			-
								Hole terminated at required depth of 3.3m in Tertiary			F		-			-
					- 3.5 -			sandstone			F		1			
	ľ			1m		Tost	nit ie r	ligned c220ºTrue					1	G	ranhic	l log key
1r	n		and scal			1031	pitio							Ē		• •
м	ois	tur	e a	nd densi bist W = W	ty			SW	190 -	_		NE		E		CLAY (CH, CL)
m	:31%	6 = la	ab-m	easured mois ample	sture							0m				SAND (SP)
ρ:	= 1.8		c = la	b-measured	density of						U 5	0				0,440 (01)
		ple: turbe		50 = undistur	rbed;							1m		$\exists E$		SILT (SM)
				drive tube (to hown)	op &				\							
_	ate			1							/	2m				GRAVEL (GP, GW)
	÷ ⊢			level inflow							/	-3m -		⊢∎	· · ·	
ļŕ	(W	/ater	outflow						and a second				5	7	COBBLES (63-200mm)
		Gro		vater not								-4m - 📕		4 ل		BOULDERS (>200mm)
P		etra	tio	ı		60m	m (Cl	ass H2) = ground						+ (ଶ ।	SHELLS SHELL FRAGMENTS
	2 0		Noresi	istance		-	surfac	e movement						ΤX	-	ROOTS
		F	Refusa	I		est		from test pit log								FRACTURES
Con	siste	ency St = 1	r (silt, Stiff /	clay, sandy 100-200k Po	clay, silty	clay) VS	= Very s	oft (<25kPa; exudes in fingers when sq ated with difficulty); VSt= Very Stiff (200-	ueezed); S =	Soft (25-	50kPa; ea	asily penetrated b umbnail): H = Harr	y fist); F : d (>4∩∩⊭¤	= Firm (5	0-100kPa	; easily penetrated by mbnail with difficulty):
Fb =	Fria	ible ((crum	bles or powd	iers when s	scraped I	by thumb	nail) ng); L = Loose (easy shovelling); MD = I								

 William C Cromer Pty. Ltd.
 Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia
 M

 M
 +61 408 122 127
 E

 <u>billcromer@bigpond.com</u>
 W
 www.williamccromer.com

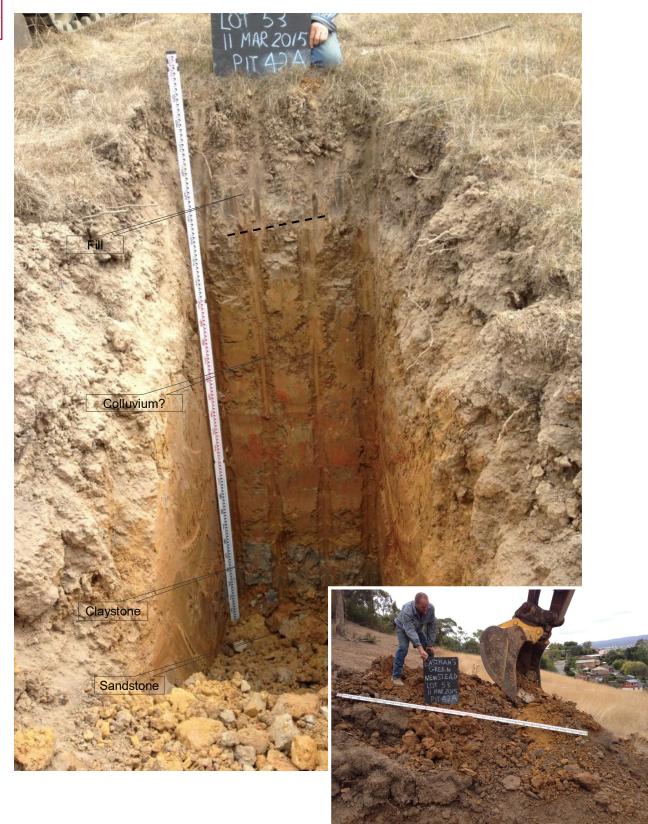
Attachment 4 Site and test pit photographs

The staff in these photographs is graduated in yellow and white sections each one metre long. The numbers on the staff are decimetres (tenths of a metre).

The main photograph depicts the soil profile in the test pit. Smaller photos (if present) show the materials excavated from the pit, the location of the pit in relation to roads, etc, and other aspects of interest as indicated.

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia


 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.williamccromer.com

PLANNING EXHIBITED DOCUMENTS Ref. no. DA 0521/2018 Berling Administration (2010) Promp Administration (2010) The Administr

 William C Cromer Pty. Ltd.
 Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia
 M

 M
 +61 408 122 127
 E
 billcromer@bigpond.com
 W
 www.williamccromer.com

 William C Cromer Pty. Ltd.
 Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia
 M +61 408 122 127 E billcromer@bigpond.com W www.williamccromer.com

19

20 11 August 2018

William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist Hobart, Tasmania, Australia M +61 408 122 127 E <u>billcromer@bigpond.com</u> W www.williamccromer.com

Ref. No:

DOCUMENTS Villiam C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist DA 0521/2018 Hobart, Tasmania, Australia 03/10/2018 M +61 408 122 127 E billcromer@bigpond.com W www.williamccromer.com

21

DA 0521/2018 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist Hobart, Tasmania, Australia ~~~

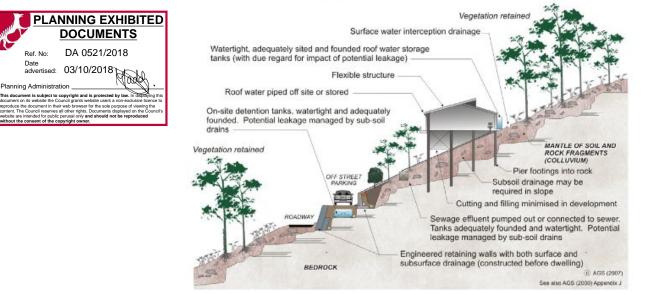
22

+61 408 122 127 E <u>billcromer@bigpond.com</u>

W www.williamccromer.com

Attachment 5

(4 pages)


Good and poor hillside construction practices

AGS Geoguide LR8 (Construction Practice)

HILL SIDE CONSTRUCTION PRACTICE

Sensible development practices are required when building on hillsides, particularly if the hillside has more than a low risk of instability (GeoGuide LR7). Only building techniques intended to maintain, or reduce, the overall level of landslide risk should be considered. Examples of good hillside construction practice are illustrated below.

EXAMPLES OF GOOD HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THE SE PRACTICES GOOD?

Roadways and parking areas - are paved and incorporate kerbs which prevent water discharging straight into the hillside (GeoGuide LR5).

Cuttings - are supported by retaining walls (GeoGuide LR6).

Retaining walls - are engineer designed to withstand the lateral earth pressures and surcharges expected, and include drains to prevent water pressures developing in the backfill. Where the ground slopes steeply down towards the high side of a retaining wall, the disturbing force (see GeoGuide LR6) can be two or more times that in level ground. Retaining walls must be designed taking these forces into account.

Sewage - whether treated or not is either taken a way in pipes or contained in properly founded tanks so it cannot soak into the ground.

Surface water - from roofs and other hard surfaces is piped away to a suitable discharge point rather than being allowed to infiltrate into the ground. Preferably, the discharge point will be in a natural creek where ground water exits, rather than enters, the ground. Shallow, lined, drains on the surface can fulfil the same purpose (GeoGuide LR5).

Surface loads - are minimised. No fill embankments have been built. The house is a light weight structure. Foundation loads have been taken down below the level at which a landslide is likely to occur and, preferably, to rock. This sort of construction is probably not applicable to soil slopes (GeoGuide LR3). If you are uncertain whether your site has rock near the surface, or is essentially a soil slope, you should engage a geotechnical practitioner to find out.

Flexible structures - have been used because they can tolerate a certain amount of movement with minimal signs of distress and maintain their functionality.

Vegetation clearance - on soil slopes has been kept to a reasonable minimum. Trees, and to a lesser extent smaller vegetation, take large quantities of water out of the ground every day. This lowers the ground water table, which in turn helps to maintain the stability of the slope. Large scale clearing can result in a rise in water table with a consequent increase in the likelihood of a landslide (GeoGuide LRS). An exception may have to be made to this rule on steep rock slopes where trees have little effect on the water table, but their roots pose a landslide hazard by dislodging boulders.

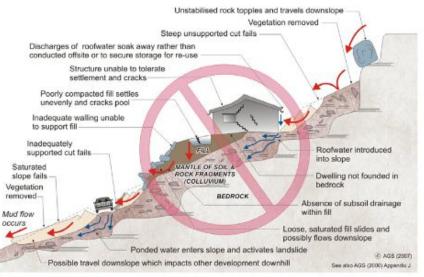
Possible effects of ignoring good construction practices are illustrated on page 2. Unfortunately, these poor construction practices are not as unusual as you might think and are often chosen because, on the face of it, they will save the developer, or owner, money. You should not lose sight of the fact that the cost and anguish associated with any one of the disasters illustrated, is likely to more than wipe out any apparent savings at the outset.

ADOPT GOOD PRACTICE ON HILLSIDE SITES

Australian Geomechanics Vol 42 No 1 March 2007

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia


 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>
 W <u>www.williamccromer.com</u>

AUSTRALIAN GEOGUIDE LR8 (CONSTRUCTION PRACTICE)

EXAMPLES OF POOR HILLSIDE CONSTRUCTION PRACTICE

WHY ARE THE SE PRACTICES POOR?

Roadways and parking areas - are unsurfaced and lack proper table drains (gutters) causing surface water to pond and soak into the ground.

Cut and fill - has been used to balance earthworks quantities and level the site leaving unstable cut faces and added large surface loads to the ground. Failure to compact the fill properly has led to settlement, which will probably continue for several years after completion. The house and pool have been built on the fill and have settled with it and cracked. Leakage from the cracked pool and the applied surface loads from the fill have combined to cause landslides.

Retaining walls - have been avoided, to minimise cost, and hand placed rock walls used instead. Without applying engineering design principles, the walls have failed to provide the required support to the ground and have failed, creating a very dangerous situation.

A heavy, rigid, house - has been built on shallow, conventional, footings. Not only has the brickwork cracked because of the resulting ground movements, but it has also become involved in a man-made landslide.

Soak-away drainage - has been used for sewage and surface water run-off from roofs and pavements. This water soaks into the ground and raises the water table (GeoGuide LR5). Subsoil drains that run along the contours should be avoided for the same reason. If felt necessary, subsoil drains should run steeply downhill in a chevron, or herring bone, pattern. This may conflict with the requirements for effluent and surface water disposal (GeoGuide LR9) and if so, you will need to seek professional advice.

Rock debris - from landslides higher up on the slope seems likely to pass through the site. Such locations are often referred to by geotechnical practitioners as "debris flow paths". Rock is normally even denser than ordinary fill, so even quite modest boulders are likely to weigh many tonnes and do a lot of damage once they start to roll. Boulders have been known to travel hundreds of metres downhill leaving behind a trail of destruction.

Vegetation - has been completely cleared, leading to a possible rise in the water table and increased landslide risk (GeoGuide LR5).

DON'T CUT CORNERS ON HILLSIDE SITES - OBTAIN ADVICE FROM A GEOTECHNICAL PRACTITIONER

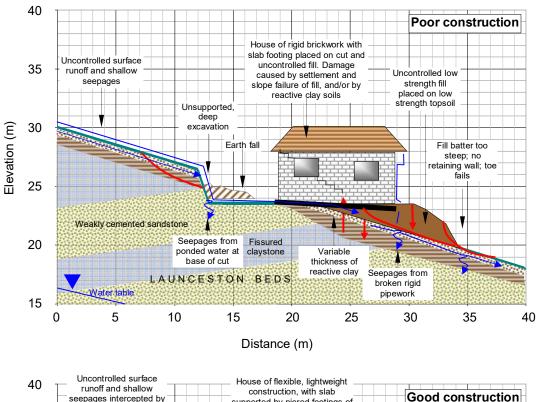
More information relevant to your particular situation may be found in other Australian GeoGuides:

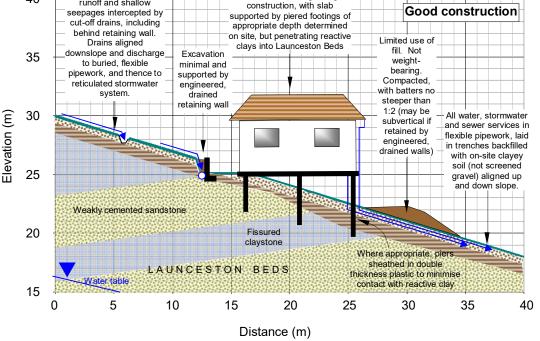
- GeoGuide LR1 Introduction
- GeoGuide LR2 Landslides

GeoGuide LR3 - Landslides in Soil

- GeoGuide LR6 Retaining Walls GeoGuide LR7 - Landslide Risk
 - GeoGuide LR9 Effluent & Surface Water Disposal
- GeoGuide LR4 Landslides in Rock GeoGuide LR5 - Water & Drainage
- - GeoGuide LR10 Coastal Landslides
 - GeoGuide LR11 Record Keeping

The Australian GeoGuides (LR series) are a set of publications intended for property owners; local councils; planning authorities; developers; insurers; lawyers and, in fact, anyone who lives with, or has an interest in, a natural or engineered slope, a cutting, or an excavation. They are intended to help you understand why slopes and retaining structures can be a hazard and what can be done with appropriate professional advice and local council approval (if required) to remove, reduce, or minimise the risk they represent. The GeoGuides have been prepared by the Australian Geomechanics Society, a specialist technical society within Engineers Australia, the national peak body for all engineering disciplines in Australia, whose members are professional geotechnical engineers and engineering geologists with a particular interest in ground engineering. The GeoGuides have been funded under the Australian governments National Disaster Mitigation Program.


25 11 August 2018

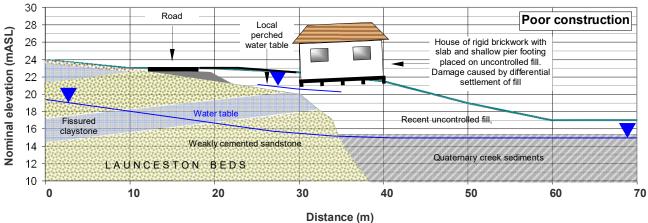

Generalised good and poor construction practices for hillsides in Launceston These schematic cross sections apply to houses on hillsides on geologic materials called the Launceston Beds.

Natural scale

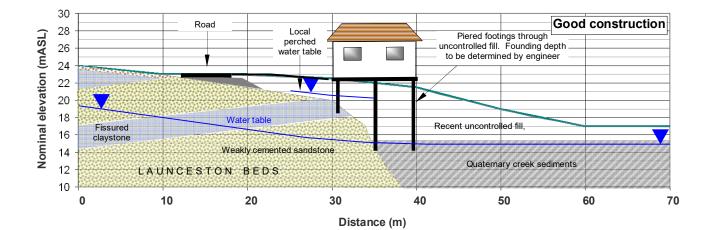
See Attachment 3 of Part 2 of this report.

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia


 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.williamccromer.com



Generalised good and poor hillside construction practices on fill

Natural scale

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>

 W www.william.ccromer.com

26 11 August 2018

26

Attachment 6 (2 pages)

Important notes about this report

Background information

William C Cromer Pty Ltd has been engaged by Ecoast Homes Pty Ltd to prepare site classification ("soil test") reports for about 50 lots in the Eastmans Green Subdivision.

The assessments are being done in accordance with Australian Standard 2870:2011 *Residential slabs and footings*, and draft Tasmanian guidelines¹ relating to the draft Tasmanian Landslide Code.

This individual AS2870 soil test report contains geotechnical information specific to the lot in question and is freely available at <u>http://eastmansgreen.com.au/</u> It is PART 1 of the AS2870 site assessment for the lot.

Important geotechnical information is common to all lots in the subdivision. Rather than repeat this information in each individual report, it was thought preferable to provide it as a separate document (PART 2), freely available at http://eastmansgreen.com.au/ and http://www.williamccromer.com/

PART 1 and PART 2 together constitute the AS2870 site classification for this lot.

Design of footing systems for this site

Recommendations for a footing system in this report do not preclude the use of alternative footing systems based on sound engineering principles sensitive to the site.

Implications for AS2870 reports from the E3.0 Tasmanian Landslide Code and guidelines

Most of the Eastmans Green Subdivision is in the Medium landslide hazard band (see Attachment 1 of PART 2). A general Landslide Risk Management (LRM) Plan has been completed for the subdivision as Attachment 4 in PART 2.

Refer to this report as:

Cromer, W. C. (2018). Geotechnical summary, site classification and wind classification, Lot 43 *Eastmans Green Subdivision, Newstead.* Unpublished report for Ecoast Homes Pty Ltd by William C. Cromer Pty. Ltd., 11 August 2018.

Dissemination of information is important

New geotechnical information is contained in this report. The information may be useful to regulators and other geotechnical practitioners. Dissemination of such knowledge is important.

Permission is hereby given by Ecoast Homes Pty Ltd, and William C. Cromer as author, for an <u>electronic copy</u> of this report to be distributed to or made available to interested parties, but only if it is distributed or made available in full. No responsibility is otherwise taken for its contents.

Permission is also given by Ecoast Homes Pty Ltd, and William C. Cromer as author, for <u>hard</u> <u>copies</u> of this report to be distributed to interested parties, but only if they are reproduced in colour, and only distributed in full. No responsibility is otherwise taken for the contents.

William C Cromer Pty Ltd may submit hard or electronic copies of this report to Mineral Resources Tasmania to enhance the geotechnical database of Tasmania.

This report is freely available at http://eastmansgreen.com.au/ and http://www.williamccromer.com/

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E <u>billcromer@bigpond.com</u>
 W <u>www.williamccromer.com</u>

¹Cromer, W. C. (2014). *Building for landslide: Geotechnical guidance for regulators and practitioners using the Tasmanian Landslide Code.* Report for the Tasmanian Department of Premier and Cabinet by William C. Cromer Pty. Ltd., June 2014).

Other reports on this subdivision

William C Cromer Pty Ltd produced detailed geotechnical reports (including landslide risk management, LRM) for Ecoast Homes Pty Ltd for the original Eastmans Green subdivision:

- Cromer, W. C. (2009). Geotechnical assessment, 76 lot subdivision, Penquite Road, Newstead. (Unpublished report for ECoast Homes Pty Ltd by William C. Cromer Pty. Ltd., 7 April 2009; 137 pages), and
- Cromer, W. C. (2011). Geotechnical Assessment Addendum Report, Eastman's Green subdivision, Penquite Road, Newstead. (Unpublished report for ECoast Homes Pty Ltd by William C. Cromer Pty. Ltd., 22 May 2011; 33 pages)

Both are available at http://eastmansgreen.com.au/ and http://www.williamccromer.com/

Suggestions about how Tasmanian practitioners should prepare AS2870 soil test reports for houses are available at http://www.williamccromer.com/soil-testing-for-houses/

WARNING

Printed copies of this report must be reproduced in colour, and in full. No responsibility is otherwise taken for its contents.

 William C Cromer Pty. Ltd. Consulting Environmental, Engineering and Groundwater Geologist

 Hobart, Tasmania, Australia

 M +61 408 122 127
 E

 billcromer@bigpond.com
 W

 www.williamccromer.com