

Proposed Building 3 – Student Services and Library Building, design by John Wardle Architects

ENVIRONMENTAL SITE ASSESSMENT – V2 Footprint of Building 3 - UTAS Development 2 Invermay Road, Invermay

June 2019 Report for John Wardle Architects

DOCUMENT CONTROL

Title	Version	Date	Author	Reviewed By
DRAFT Environmental Site Assessment. Building 3 UTAS Development; 2 Invermay Road, Invermay.	DRAFT Version 1	18 June 2019	Sarah Joyce	JP Cumming
Environmental Site Assessment V2. Building 3 UTAS Development; 2 Invermay Road, Invermay.	Version 2	21 June 2019	Sarah Joyce	JP Cumming

EXECUTIVE SUMMARY

This report presents the findings from Environmental Site Assessment (ESA) undertaken by Geo-Environmental Solutions Pty. Ltd. (GES) at 2 Invermay Road, Invermay in the footprint of Building 3 – the proposed student services building of the University of Tasmania (UTAS) - hereby referred to as 'The Site'. GES was engaged by *John Wardle Architects* on behalf of their client *University Of Tasmania* to conduct this investigation. The report will assist with providing information to the Launceston City Council for the current Development Application. The Client has designed a 3-story student services building.

This report has been prepared by a suitably qualified and experience practitioner in accordance with procedures and practices detailed in NEPM (2013) guidelines and key regulations and policies.

The objective of the ESA was to meet the Tasmanian Interim Planning Schemes criteria for a *Change of Use* and *Excavation Works* (It is anticipated that limited excavations will extent to 0.5m below ground surface to account for the removal of the existing carpark plus the service trenches, lift and stair footprints) and to assess the actual contamination levels at the site and determine:

- Whether the site is suitable for the proposed use/development;
- Whether any site contamination presents an occupational health and safety risk to workers involved in redevelopment of the site or future site users;
- Whether any site contamination is likely to present an environmental risk from excavation conducted during development at the site; and
- Whether any specific remediation and/or protection measures are required to be implemented before use or excavation commences.

The following conclusions have been made from the soil investigation in the footprint of building 3:

- Hydrocarbon contamination was confirmed in most boreholes at shallow depths (0.5-0.6 m bgs), and the hydrocarbon fractions identified (C¹⁶-C³⁴) are indicative of diesel, oils, or older degraded fuels.
- There was an absence of volatile hydrocarbons which rules out an indoor vapour risk, a risk to trench workers and/ or a dermal contact risk to construction workers.
- Slightly elevated levels of metals were detected with ecological investigation levels exceedances for copper zinc and arsenic in a small number of samples.
- There were no health investigation level exceedances for land use D Commercial and Industrial.
- There is one health investigation level exceedancs for land use C recreational use, this was for Arsenic at 0.5-0.6m bgs in BH03.
- Groundwater was not encountered during drilling to a depth of 2m even though the boreholes were at an elevation of approximately 2.2-2.4m above sea level.
- For proposed excavation works the results were compared against *Information Bulletin 105* guidelines. The material tested is classified as a mix of Level 1 (clean fill) and Level 2 Material (low level contaminated soil).

GES recommends the following work should be undertaken to mitigate risk during and post construction at the site;

- A Contamination Management Plan be completed and implemented for all stages of the development. All construction workers should be informed of the contamination at the site during their site induction.
- Clean soil should be imported to site for the proposed Indigenous Garden Bed.

This investigation only investigated the area of the proposed footprint of Building 3. If the design of the proposed development is altered, then there may be a requirement to assess the soil results against alternative guidelines or conduct further site investigations outside the current proposed footprint.

Statement of Suitability

Based upon the results of the current investigation soil contamination at the site does not pose a risk to Human Health or the Environment (ecosystems) and the site is suitable for its intended use; provided the above recommendations are followed. It is also concluded that no further contamination remediation or management measures are necessary during the site development works. Environmental Site Assessment – V2: Building 3; 2 Invermay Road, Invermay, June 2019

Table of Contents	
DOCUMENT CONTROL	
EXECUTIVE SUMMARY	
ABREVIATIONS	VII
1 INTRODUCTION	9
1.1 GENERAL	9
	11
1.4 SCOPE OF WORKS	11
2 PLANNING	12
2.1 ZONING	12
2.2 PLANNING SCHEME REQUIREMENTS	12
2.2.1 Change of Use (E2.5 P1)	12
2.2.2 EXCAVATION WORKS E2.6.2 P1	13
2.3 PROPOSED SITE REDEVELOPMENT WORKS	13
3 BACKGROUND	13
2.1 GEOLOGY	12
3.2 ENVIRONMENTAL PROTECTION ALITHORITY - PROPERTY INFORMATION REQUEST	13
3.3 HISTORICAL AFRIAL PHOTOGRAPHS	15
3.4 HISTORICAL INVESTIGATIONS	15
3.4.1 ENTIRE SITE	15
3.4.2 FOOTPRINT OF BUILDING 3 – STUDENT SERVICES AND LIBRARY	18
3.5 POTENTIAL CONTAMINATION ISSUES	18
3.5.1 Areas of Potential Concern	18
3.5.2 CONTAMINANTS OF POTENTIAL CONCERN	18
4 FIELD INVESTIGATION PROCEDURES	20
4.1 Works Summary	20
4.2 SOIL INVESTIGATION	21
4.2.1 BOREHOLE DRILLING	21
4.2.2 SOIL SAMPLING	21
4.2.3 SOIL ANALYSIS	21
5 QUALITY CONTROL	23
5.1 FIELD	23
5.2 LABORATORY	24
6 FIELD INVESTIGATION FINDINGS	25
	25
6.2 SOIL BORES	25
	20

6.2.1 GEOLOGICAL INTERPRETATION	26
6.2.2 GRAIN CLASS INTERPRETATION	26
7 SOIL ECOLOGICAL IMPACT ASSESSMENT	27
<u> </u>	
	27
7.2 NEDM ASC (2013) GUIDELINES	27
7.2 Guidelines	27
7.3.1 ECOLOGICAL SCREENING LEVELS	27
7.3.2 Ecological Investigation Levels	27
7.4 FINDINGS	28
7.4.1 ECOLOGICAL SCREENING LEVELS	28
7.4.2 ECOLOGICAL DEVELOS	30
	50
8 SOIL HUMAN HEALTH DIRECT CONTACT ASSESSMENT	32
8.1 GUIDELINES	32
8.1.1 LAND USE CLASSIFICATION	32
8.1.2 Adopted Land Use Classification	32
8.2 FINDINGS	32
8.2.1 DERMAL CONTACT - PETROLEUM HYDROCARBONS	32
8.2.2 DUST INHALATION & SOIL INGESTION	33
9 INDOOR INHABITANT PVI ASSESSMENT – HSL'S	35
9.1 SELECTED MEDIA FOR ASSESSING PVI RISK	35
9.2 LAND USE CLASS	36
9.3 SOIL ASSESSMENT	36
	22
10 TRENCH WORKER PVI ASSESSMENT – HSL'S	37
	77
10.1 CLASSIFICATION	37
10.2 FINDINGS	37
11 SOIL DISPOSAL ASSESSMENT	38
11.1 GUIDELINES	38
11.2 FINDINGS	38
12 CONCEPTUAL SITE MODEL	42
12.1 PRIMARY SOURCES OF CONTAMINATION	42
12.1.1 CONFIRMED PRIMARY SOURCE	42
12.1.2 POTENTIAL PRIMARY SOURCES	42
12.1.3 CONTAMINATES OF POTENTIAL CONCERN	42
12.2 SECONDARY SOURCES OF CONTAMINATION	42
12.2.1 CONFIRMED SECONDARY SOURCE	42
12.2.2 POTENTIAL SECONDARY SOURCE	42
12.3 I RANSPORT IVIECHANISMS AND EXPOSURE PATHWAYS	42
12.4 POTENTIAL RECEPTORS	42
12.4.1 POTENTIAL ECOLOGICAL RECEPTORS	42
12.4.2 POTENTIAL HUMAN RECEPTORS	43

<u>13</u> <u>CON</u>	CLUSIONS	45
12 1 51		46
12.2 Ar	E MISTORY	45
13.2 AL		45
13.3 30		45
<u>14 REC</u>	DMMENDATIONS	46
14.1 ST	ATEMENT OF SUITABILITY	46
<u>REFEREN</u>	CES	47
<u>LIMITATI</u>	DNS STATEMENT	49
<u>APPENDI</u>	(1 GES STAFF	50
<u>APPENDI</u>	(2 ARCHITECTS PLANS	51
APPENDI	(3 EPA DOCUMENTATION	55
APPENDI	(4 HISTORICAL AERIAL PHOTOGRAPHS	58
<u>APPENDI</u>	(5 SITE PHOTOGRAPHS	69
APPENDI	(6 PID CALIBRATION RECORD	77
<u>APPENDI</u>	(7 LABORATORY CHAIN OF CUSTODY	79
<u>APPENDI</u>	(8 LABORATORY SAMPLE RECEIPT NOTIFICATION	84
<u>APPENDI</u>	(9 BOREHOLE LOGS	91
<u>APPENDI</u>	(10 QUALITY ASSURANCE AND QUALITY CONTROL DOCUMENTATION	99
APPENDI	(11 ANALYTICAL RESULTS - CERTIFICATE OF ANALYSIS	139

Plates

Plate 1 Image existing site conditions – Asphalt carpark	10
PLATE 2 VIEW ACROSS THE INVESTIGATION AREA TO THE NORTHWEST; YORK PARK STADIUM	25
PLATE 3 VIEW ACROSS THE INVESTIGATION AREA TO THE NORTHEAST; ACADEMY OF THE ARTS BUILDING	25

Figures

FIGURE 1 SITE LOCATION (IMAGE SOURCED FROM THE LIST)	9
FIGURE 2 CURRENT SITE CONDITIONS	
FIGURE 3 COUNCIL PLANNING ZONES (2015) UNDER THE TASMANIAN INTERIM PLANNING SCHEME	
FIGURE 4 MINERAL RESOURCES TASMANIA 1:25000 SCALE MAPPING (THE LIST).	
FIGURE 5 SUMMARY OF PREVIOUSLY DOCUMENTED COPC FOR THE ENTIRE SOUTHERN PART OF THE SITE	
FIGURE 6 SUMMARY OF PREVIOUSLY DOCUMENTED SITE INFORMATION FOR THE FOOTPRINT OF BUILDING 3.	
FIGURE 7 BOREHOLE PLAN	
FIGURE 8 TRAIL OF ESL EXCEEDANCES IN SOIL ACROSS THE SITE (BOREHOLE #1 ONLY)	
	D

FIGURE 9 IB105 EXCEEDANCES IN SOIL ACROSS THE SITE	. 41
FIGURE 10 CONCEPTUAL SITE MODEL	. 44

Tables

TABLE 1 SITE DETAILS	11
TABLE 2 SUMMARY OF SITE INVESTIGATION DETAILS	20
TABLE 3 SUMMARY OF SOIL SAMPLING METHODS	21
TABLE 4 OVERVIEW OF SOIL ANALYSIS AND QUALITY CONTROL	22
TABLE 5 FIELD QA/QC PROCEDURES AND COMPLIANCE	23
TABLE 6 SOIL LABORATORY QA/QC PROCEDURES AND COMPLIANCE	24
TABLE 7 SUMMARY OF GRAIN CLASS BASED ON USCS CLASSIFICATION – BH01 – BH08	26
TABLE 8 SUMMARY OF SOIL INVESTIGATION LIMITS CONSIDERED AT THE SITE BASED IN NEPM ASC (2013)	27
TABLE 9 SUMMARY OF SOIL ANALYTICAL RESULTS COMPARED WITH ECOLOGICAL SCREENING LEVEL'S FOR URBAN RESIDENTIAL/ PU OPEN SPACES – BH01-BH08	IBLIC
TABLE 10 SOIL ANALYTICAL RESULTS COMPARED AGAINST ECOLOGICAL INVESTIGATION LEVELS FOR URBAN RESIDENTIAL/ PUBLIC O SPACES – BH01-BH08	OPEN 31
TABLE 11 SUMMARY OF LAND USE SPATIAL AND TEMPORAL SETTING FOR DETERMINING EXPOSURE RISK	32
TABLE 12 SOIL ANALYTICAL RESULTS COMPARED AGAINST CRC CARE GUIDELINES FOR DERMAL CONTACT – BH01-BH08	33
TABLE 13 SOIL ANALYTICAL RESULTS COMPARED AGAINST NEPM (2013) HEALTH INVESTIGATION LIMIT GUIDELINES – BH01-BH	108.34
TABLE 14 PREFERRED METHODS FOR DETERMINING SITE PVI RISK	35
TABLE 15 SOIL ANALYTICAL RESULTS COMPARED AGAINST HSL D FOR INDOOR VAPOUR RISK – BH01-BH08	36
TABLE 16 SUMMARY OF SOIL ANALYTICAL RESULTS COMPARED AGAINST HSL'S FOR ASSESSING PVI RISK TO TRENCH WORKERS –	BH01-
BH08	37
TABLE 17 SUMMARY OF IB105 CLASSIFICATION GUIDELINES	38
TABLE 18 SOIL ANALYTICAL RESULTS COMPARED AGAINST IB105 INVESTIGATION LIMITS FOR SOIL DISPOSAL – DRY WEIGHT	
CONCENTRATIONS	39
TABLE 19 SOIL ANALYTICAL RESULTS COMPARED AGAINST IB105 INVESTIGATION LIMITS FOR SOIL DISPOSAL – LEACHABLE FRACTION	ons 40
TABLE 20 EXPLANATORY NOTES REGARDING POTENTIAL RECEPTORS	43

ABREVIATIONS

ADWG	Australian Drinking Water Guidelines
AEC	Areas of Environmental Concern
AHD	Australian Height Datum
ALS	Analytical Laboratory Services
ANZECC	Australia and New Zealand Environment and Conservation Council
AWQG	Australian Water Quality Guidelines
BGS	Below Ground Surface
BH	Borehole
BTEX	Benzene Toluene Ethylbenzene Xylene
CMP	Contamination Management Plan
COA	Certificate of Analysis
COC	Chain of Custody
COPC	Contaminant of Potential Concern
CRC CARE	Corporative Research Centre for Contamination Assessment and Remediation of the Environment
CSM	Conceptual Site Model
DQO	Data Quality Objectives
DWS	Depth Water Struck
EC	Electrical Conductivity
EOH	End Of Hole
EIL	Ecological Investigation Levels
ESL	Ecological Screening Levels
EPA	Environmental Protection Authority
EPN	Environmental Protection Notice
ESA	Environmental Site Assessment
GDA94	Geocentric Datum of Australia 1994
GES	Geo-Environmental Solutions Pty. Ltd.
GME	Groundwater Monitoring Event
HIL	Health Investigation Levels
HSL	Health Screening Levels
IL	Investigation Levels
IN	Investigation Notice
IP	Interface Probe
LiDAR	Light Detection And Ranging
LOR	Limits of Reporting
MCRWBA	Minimum Construction Requirements for Water Bores in Australia
MDL	Mean Detection Limit
MW	Monitoring Well
NATA	National Association of Testing Authorities
NEPM ASC	National Environmental Protection (Assessment of Site Contamination) Measure
NHMRC	National Health and Medical Research Council

Geo Environmental Solutions – GES

NRMMC	Natural Resource Management Ministerial Council
NL	Non Limiting
NRMMC	Natural Resource Management Ministerial Council
PAH	Polynuclear Aromatic Hydrocarbons
PCP	Physico-Chemical Parameters
PEV	Protected Environmental Values
PHC	Petroleum Hydrocarbons
PID	Photo-Ionisation Detector
PPA	Preferential (PVI) Pathways Assessment
PSH	Phase Separated Hydrocarbons
PVI	Petroleum Vapour Intrusion
Redox	Reduction / Oxidation Potential
RN	Remediation Notice
SCA	Site Contamination Assessment
SCM	Site Contamination Model
SWL	Standing Water Level
TDS	Total Dissolved Solids
TOC	Top of Casing
TPH	Total Petroleum Hydrocarbons
TRH	Total Recoverable Hydrocarbons
USCS	Unified Soil Classification System
VME	Vapour Monitoring Event
VP	Vapour Probe
WRG	Water Resource Group

1 INTRODUCTION

1.1 General

This report presents the findings from *Environmental Site Assessment* (ESA) undertaken by Geo-Environmental Solutions Pty. Ltd. (GES) at 2 Invermay Road, Invermay in the footprint of Building 3 – the proposed student services building of the University of Tasmania (UTAS) - hereby referred to as 'The Site'. GES was engaged by *John Wardle Architects* on behalf of their client *University Of Tasmania* to conduct this investigation. The report will assist with providing information to the Launceston City Council for the current Development Application (DA).

The Site location is presented in Figure 1, an image of the existing it conditions is presented in Plate 1 and the current site aerial photograph is presented in Figure 2.

The Client has designed a 3-story student services building. The ground floor level will house a student space, a small retail tenancy plus two flights of stairs, amenities and a lift. The two upper levels will be a build for purpose Library. The rooftop will be decked with solar panels. Excavations are anticipated to be limited as the proposed building design will employ driven piles for foundations.

This report has been prepared by a suitably qualified and experience practitioner in accordance with procedures and practices detailed in NEPM (2013) guidelines and key regulations and policies identified in the References section of this document. Personnel engaged in preparing this *ESA* are listed in Appendix 1 along with their relevant qualifications and years of experience.

Figure 1 Site Location (image sourced from the LIST)

Environmental Site Assessment – V2: Building 3; 2 Invermay Road, Invermay, June 2019

Plate 1 Image existing site conditions – asphalt carpark.

Figure 2 Current Site Conditions

1.2 Site Details

Site details are presented in Table 1.

able 1 Site Details
Site Address
2 Invermay Road, Invermay
Current Title identification details
PID 3389971 Title Reference 174633/2
Current land use
Mixed use site UTAS campus buildings and public open spaces
Current Ownership (as per current certificates of title; the LIST)
Launceston City Council; PO BOX 396 Launceston, 7250 Tasmania.
Zoning
The site is Particular Purpose use under the Launceston Interim Planning Scheme, 2015. Precinct Map: Cultural
and Public Purpose
Local Council
Launceston City Council
Proposed Site Use
Cultural and Public Purpose: Educational and Cultural – Student Services Building. Commercial site use.
Requirement for current Investigation
Proposed property redevelopment, including a change of land use and potential excavation on a potentially
contaminated site; former Railyard.

1.3 Investigation Objectives

The objective of the ESA was to meet the Tasmanian Interim Planning Schemes criteria for a *Change of Use* and *Excavation Works* and to assess the actual contamination levels at the site and determine:

- Whether the site is suitable for the proposed use/development;
- Whether any site contamination presents an occupational health and safety risk to workers involved in redevelopment of the site or future site users;
- Whether any site contamination is likely to present an environmental risk from excavation conducted during development at the site; and
- Whether any specific remediation and/or protection measures are required to be implemented before use or excavation commences.

1.4 Scope of Works

The scope of works of this ESA was to:

- Review previous documents on the site and conduct an invasive soil investigation in the footprint of the proposed Building 3 Student Services Building;
- Drill a total of 8 bore holes, to collect 16 primary soil samples, these samples were tested for Total Recoverable Hydrocarbons (TRH), Benzene Toluene Ethylbenzene Xylene Naphthalene (BTEXN), Polynuclear Aromatic Hydrocarbons (PAHs) and a suite of 15 Metals, plus PCBs and cyanide in select samples.
- All soil samples were sent to a National Association of Testing Authorities (NATA) accredited laboratory to determine the presence/ absence of contamination and at what level;
- All samples were sent with quality assurance/quality control samples for analysis;
- All analytical results against were compared against NEPM ASC (2013) guidelines as well as other relevant guidelines for assessing hydrocarbon vapour and soil dermal contact risks; and
- Present the findings of the site investigation, conduct a risk assessment and develop a conceptual site model (CSM) plus present future contamination management recommendations.

2 PLANNING

2.1 Zoning

The site is zoned *Particular Purpose* under the Tasmanian Interim Planning Scheme of 2015 (Figure 3) and is surrounded by *General Residential, Environmental Management, Community purpose, Commercial, Inner Residential, Light Industrial, General Industrial, Open Space and Utilities.*

Figure 3 Council planning zones (2015) under the Tasmanian Interim Planning Scheme

2.2 Planning Scheme Requirements

The need for this assessment was triggered by the *Tasmania Interim Planning Scheme 2015* as the Site falls within the Launceston City Councils (LCC) contaminated site overlay/ register and is described as a site that may have been potentially contaminated land. Potentially contaminated land means land that is, or adjoins, land that the applicant or the planning authority may have involved a potentially contaminating activity. As the site formally hosted as railyard and has had 'petroleum product storage', is proposed to have a change of use and will involve excavation works, the site needs to be assessed in accordance with the interim planning scheme codes: *E2.5 A1- Change of Use; and E2.6.2 P1- Excavation*.

As there are no acceptable solutions to *change of use* and *excavation works* at the site, *E2.5 P1* and *E2.6.2 P1* performance criteria are to be addressed.

2.2.1 Change of Use (E2.5 P1)

As there is proposed change of use of the site and there are no acceptable solutions to change of use, E2.5 P1 performance criteria are to be addressed. The performance criteria identify that for there to be a change of use, the objective is that it must be suitable for the intended use, having regard to:

- (a) an environmental site assessment that demonstrates there is no evidence the land is contaminated; or
- (b) an environmental site assessment that demonstrates that the level of contamination does not present a risk to human health or the environment; or
- (c) a plan to manage contamination and associated risk to human health or the environment that includes:
 - i. an environmental site assessment;
 - ii. (any specific remediation and protection measures required to be implemented before any use commences; and
 - iii. a statement that the land is suitable for the intended use.

2.2.2 Excavation Works E2.6.2 P1

As there is proposed excavation works at the site, there are no acceptable solutions to proposed works, E2.6.2 P1 performance criteria are to be addressed. The objective of the performance criteria is to identify that the excavation works must not adversely impact on health and the environment, having regard to:

- (a) an environmental site assessment that demonstrates there is no evidence the land is contaminated; or
- (b) a plan to manage contamination and associated risk to human health and the environment that includes:
 - i. an environmental site assessment;
 - ii. any specific remediation and protection measures required to be implemented before excavation commences; and
 - iii. a statement that the excavation does not adversely impact on human health or the environment.

2.3 Proposed Site Redevelopment Works

Relevant architectural designs, June 2019 are presented in Appendix 2. The Client has designed a 3-story student services building. The ground floor level will house a student space, a small retail tenancy plus two flights of stairs, amenities and a lift. The two upper levels will be a build for purpose Library. The rooftop will be decked with solar panels. The current ground level is 2.2-2.4 and the finished floor level will be 2.9. Excavations are anticipated to be limited as the proposed building design will have driven piles for foundations.

3 BACKGROUND

3.1 Geology

The geology of the site has been mapped by Mineral Resources Tasmania (Figure 4). The site is inferred to be underlain with Quaternary Sediments. The surrounding geology comprises of quaternary and Triassic sediments.

Figure 4 Mineral Resources Tasmania 1:25000 Scale Mapping (The LIST).

3.2 Environmental Protection Authority - Property Information Request

A property information request was provided by the Environmental Protection Authority (EPA) Tasmania on the 24th April 2019. The letter is included in Appendix 3 and are summarised below:

'The site historically hosted the Launceston railyards and workshops. Pioneer Concrete works and sporting grounds. It now hosts the Launceston Showgrounds, Queen Victoria Museum and the University of Tasmania (UTAS) Inversek Campus'

The following has been directly extracted from the letter:

EPA Tasmania has numerous volumes of documents regarding the redevelopment and repurposing of the Site during the 1990s. These include, but are not limited to:

- Environmental Audit Inveresk Railway Workshops Redevelopment project Launceston Tasmania for Launceston City Council Volume 1: Site History, dated February 1992, prepared by Dames and Moore
- Queen Victoria Museum and Art Gallery Inveresk Railyard Redevelopment Contamination Assessment Report – Land, dated June 1999, prepared by SEMF
- Queen Victoria Museum and Art Gallery Inveresk Railyard Redevelopment Contamination Assessment Report – Buildings, dated June 1999, prepared by SEMF
- Launceston City Council August 1999 York Park Environmental Site assessment, prepared by SKM
- Department. of State Development Inveresk Railyard Redevelopment Project Site Management Plan, dated August 2000, prepared by SEMF

In March 2019, EPA Tasmania approved the transport of 4200m³ of low-level contaminated (Level 2) soil from UTAS Stadium to the Launceston Waste Centre.

No further records relating to contamination or potentially contaminating activities at the Site were found. The following records relating to neighbouring properties:

129-139 Invermay Road

- Historic WorkSafe Tasmania (WST) records indicate that dangerous goods were stored in underground storage tanks (USTs) at the property between 1949 and 1960. The record refers to WST file number N27.
- EPA Tasmania received notification in September 1999 of an incident at the Mobil Service Station having the potential to cause harm. Approval to remove the contaminated soil to the Launceston Waste Centre was given in 2000.

• Currently the property hosts a United Petroleum Service Station with four active UPSS with a total volume of 85,000L.

103 Invermay Road

- Six UPSS were registered at the Coles Express Service station in September 2010. EPA Tasmania received advice that three Underground Storage Tanks were removed and another decommissioned in situ at the property in November 2011 due to leaking.
- Remediation Notice 8655/1 (RN) was issued in July 2013 to require further works to address petroleum hydrocarbon contamination in groundwater and vapour risk concerns. The RN was revoked in November 2014.
- EPA Tasmania hold several documents regarding this property. The most recent is:

Environmental Site Assessment - Coles Express Invermay Service Station - 103 Invermay Road Invermay, dated 31 March 2014, prepared by ERM

3-11 Dry Street

- Three UPSS were registered at the Caltas Petrol Station in June 2010.
- A decommissioning form stated that two UPSS were removed in December 2015.

32-38 Invermay Road

• Four UPSS with a total volume of 89,000L are registered at the Caltas service station.

1-19 Lindsay Street (Scottsdale Levee)

- Site Management Notice 8655/1, relating to the burial of approximately 300 m³ of hydrocarbon contaminated Soil, is registered on the property.
- EPA Tasmania holds the following report regarding the contaminated soil:

Summary Report - Burial of PAH Contaminated Soil Scottsdale Levee, dated October 2011, prepared by Pitt and Sherry

No other records relating to contamination or potentially contaminating activities at adjacent properties were found.

3.3 Historical Aerial Photographs

The historical aerial photographs area presented in Appendix 4. Photographs from the following dates are included; 2016, 2013, 2008, 2006, 1995, 1984, 1978 and 1956. The entire site hosted has the Inveresk Railway since prior to 1956.

In summary, with reference to the footprint of building 3 – the student services building; the rail line ran through the centre of the investigation area. Transport carriages also appeared to be stored at this location. By 1995 when the site was starting to be redeveloped, the surface of the investigation appears to have been scraped back. Staining was present along the former rail line location across this area. It is understood from SEMF 1995, that contaminated soil was removed at this time.

3.4 Historical Investigations

For a list of historical investigations that were reviewed as part of this investigation see the References section of this report. Figure 5 summarises the information obtained in these reports.

3.4.1 Entire Site

Dames & Moore (1992), general findings; The contamination assessment has shown that heavy metal contamination (principally lead. copper and zinc) is widespread the site. with the heaviest areas of contamination being in southern half. The total petroleum hydrocarbon (TPH) contaminant is not as widespread, the heaviest contamination being in the vicinity of the diesel filling station, in the central portion of the site (Precinct D & E). TPH contamination also in areas contaminated with heavy metals. Therefore, the site can be divided into three contamination status groups follows;

- Areas contaminated with heavy metals only;
- Areas contaminated with heavy metals and TPH•, and
- Areas contaminated With TPH only (the eastern portion of precinct D).

Samples were also tested for a range volatile organic compounds including monocyclic aromatic hydrocarbons (benzene, toluene, ethyl benzene, and xylene) and many chlorinated volatile hydrocarbons, but none were detected. This was confirmed the intra-lab quality control testing using different sampling and testing procedures.

Contaminated Fill: The entire site has been reclaimed and filled with of an nature. It is suspected that the neighbouring industry has used the Site as a tipping area. Aerial photographs from 1949 and later, indicate filling in the northern portion ff the site. The fill does not appear to be only soil. Anecdotal information has suggested foundry wastes, entire manufacturing machines, ash, dinker and sundry other wastes were also disposed with the fill.

Hydrocarbon Spills: observations made by Dames & Moore have identified areas of hydrocarbon contamination from the diesel shop, diesel waste tank, diesel fuel shed, and greases and Oil from general maintenance. Diesel spills and diesel pipe breakages have been reported are sources of contamination. Anecdotal information suggests that following heavy rain, diesel floats to surface on the shallow water table.

Asbestos: It noted many of the buildings on the site were roofed and /or cladded with asbestos sheeting of various widths and asbestos warning signs have been placed on numerous items of equipment within buildings. material is only a hazard when disturbed and site development will therefore need to include a provision for asbestos management.

It is possible that asbestos has been disposed to landfill at unknown locations in disused. This eventuality will also need to be addressed in future management of the site.

It is understood Tasrail has previously carried out a study of the extent of on the site should that information be required in detail.

Summary of hydrocarbon detections:

• No detections of TPH C₆ to C₁₄ in SL13 and SL14 near the exhibition building carpark as well as in SL18 near the AGM Entertainment Area. TPH C₆ to C₁₄ are normally used to identify vapour intrusion risks, indicating a low likelihood sourcing from the soil in these locations. Can not rule out a vapour intrusion risk due possibly vapour migration from the water table.

Figure 5 Summary of Previously documented COPC for the entire southern part of the site Note the following abbreviations:

ICF Pty LTD - environmental consultants. (1993); UST - Underground storage tank; D&M - Dames & Moore; PCB - polychlorinated biphenyl

- Low TPH C_{15} to C_{28} concentrations ranging from 22 to 26 mg/kg in SL13 and SL14 near the exhibition building carpark and 8 mg/kg in SL18 near the AGM Entertainment Area.
- Not detect of very low TPH C₂₉ to C₃₆ in SL18 near the AGM Entertainment Area and in SL13 and SL14 near the exhibition building carpark
- PAH compounds are identified in fill across much of the site.

Summary of other contaminants:

- No detections of VOC's in samples collected at the site;
- No detections of phenols or chlorophenols in primary samples collected at the site;
- A single detection of PCB in SL27 located on the northern side of the circular Inveresk car park near the historical power station. It is possible PCB's have leached to the water table and migrated towards the south towards the proposed building near the train station.

3.4.2 Footprint of Building 3 – Student Services and Library

The following was extracted from Dames & More Findings – Exhibition Building Carpark & AGM Entertainment Area (Boreholes SL112 to SL18). Summary of *metal concentrations* in relation to NEPM ASC 2013 HIL's:

- Concentrations of copper, arsenic, zinc, cadmium, chromium, nickel, and mercury in analysed samples do not exceeded any NEPM ASC 2013 guideline limits;
- Single sample in exhibition building carpark (SL13 0.0 to 0.5 m) with concentrations of lead at 1540 mg/kg exceeding commercial guideline limit of 1500 mg/kg.
- Single sample in exhibition building carpark (SL13 0.0 to 0.5 m) with concentrations of lead at 1540 mg/kg exceeding commercial guideline limit of 1500 mg/kg and recreational guideline limits at 600 mg/kg;
- A single sample near the AGM Entertainment Area (SL18 0.0 to 0.5) with concentrations of lead at 631 mg/kg exceeded recreational guideline limits for lead;

3.5 Potential Contamination Issues

3.5.1 Areas of Potential Concern

As determined in the previous investigations, there were many potentially contaminating activities associated with hosting the historical railyards at the site. With relevance to the footprint of the proposed student services building and this current investigation (see Figure 6), the following areas of potential concern (AOPC) have been identified (SEMF 1995);

- Former rail lines intersected the investigation area trending in a southwest to northeasterly direction; contaminated surface material was removed along that former path;
- Two former underground storage tanks (USTs) were situated approximately 20 m north of the footprint were, and
- Elevated metals were detected in soil samples 60 m north of the proposed building footprint.

It is also possible that there may be other areas on the site where potentially contaminating activities have occurred.

3.5.2 Contaminants of Potential Concern

As determined in previous contamination investigations, the following contaminants of potential concern (COPC) associated with hosting a railyards at the site have been identified and confirmed on site:

- Total Petroleum/Recoverable Hydrocarbons (TPH/TRH);
- Volatile monoaromatic hydrocarbons: Benzene, Toluene, Ethylbenzene, Xylene (BTEX) and derivatives;
- Polycyclic Aromatic Hydrocarbons (PAH) including Benzo(a)pyrene (B(a)p) and
- Heavy metals, in particular; antimony; arsenic; cadmium; chromium; copper; lead; mercury, tin; and zinc.
- Chlorinated hydrocarbons including Polychlorinated Biphenyls (PCB's);
- Phenolic compounds including chlorophenols;
- Acid or alkaline conditions;

- Volatile organohalides including methylene chloride, etc;
- Cyanides; and
- Asbestos.

Figure 6 Summary of Previously documented site information for the footprint of Building 3.

Other potential Contaminants: Other potential contamination can be associated with the following:

- In foundries there is the potential for metal contamination, phenols from phenolic resins to make molds and the cyanide from quenching baths. Cyanide may have been used to mark metal for cutting;
- The painting areas have potential to pollute with solvents as paint thinners, metals in the paint pigment and pesticides in the paint as termite protection;
- Chlorinated solvent may have been used as degreasing agents;
- The ash and clinker from steam locos is likely to cause polycyclic aromatic hydrocarbon (PAH) and cyanide contamination;
- Switch gear and early hydraulic fluids may have the potential for polychlorinated biphenyl (PCB) contamination; and
- If the timber in the drying areas was treated with timber preservatives such as copper chrome arsenic (CCA) or tributyl tin (TBTO) there may be potential for the leaching of copper, chromium, arsenic and tin compounds. Furthermore, if the timber was treated with creosote there is also the potential for PAH, phenol and cresol contamination.

4 FIELD INVESTIGATION PROCEDURES

4.1 Works Summary

One site visit was conducted to complete the environmental site assessment, see details in Table 2; borehole locations are presented in Figure 7. Photographs of site works are presented in Appendix 5.

A total of 16 primary soil samples were collected and selected for analysis. QA/QC samples included 1 *'duplicate'*, 1 Intra-lab duplicate split and 1 *Rinsate blank*.

Table 2	Summary	of Site	Investigation	Details
		01 0100		

Scope	Data	Lab Report	port Details					
Drilling/ Sample collection	31 th May 2019	EM1908628 Primary Lab	Sampled BH01 – BH08; 16 Primary Samples collected and analysised					
		Rebatch EM1909096	Secondary Laboratory samples (ES1917553): Intra-lab duplicate split					

Figure 7 Borehole Plan Note: BH#-Soil bores

4.2 Soil Investigation

4.2.1 Borehole Drilling

At each of the bore locations, the following precautions were put in place to avoid disrupting underground service assets:

- Dial Before You Dig plans were obtained;
- Archers Underground Service were engaged; and
- The first meter of the bore was cleared with a hand auger.

A total of eight (8) 65 mm diameter soil bores were drilled for assessing site geology and sampling for contamination impact. The bores were drilled by GES using the industry recognized Geoprobe direct push drilling system. The selected drilling method involved using a Geoprobe dual tube to retain wall integrity and eliminates risk of profile collapse whilst allowing extraction of 1.0 m length sample cores and allows for deployment of pre-packed well systems. Soil samples were collected from the cores in accordance with procedures set out in Table 3.

4.2.2 Soil Sampling

Soil bore soil sampling was conducted per the National Environmental Protection (Assessment of Site Contamination) Measure (NEPM ASC 2013) and AS4482 sampling guidelines. Table 3 presents a summary of the soil assessment methodology adopted at the site.

Activity	Details / Comments
	Soil bores were drilled:
Drilling Method	• Hand auger over the first meter to clear for services;
	 Industry recognized Geoprobe direct push drilling system.
Soil Logging	Logging the soil was conducted in accordance with the unified soil classification system (USCS) as detailed in AS1726 (1993).
Decontamination of Sampling Equipment	Decon 90 was used to decontaminate reusable sampling equipment (hand auger and core trays) which was triple rinsed, the final rinse with deionised water.
Soil Sample Collection	In accordance with AS4482.2. Individual soil samples were collected using disposable nitrile gloves from approximately at 0.5 intervals below ground surface (bgs) and/or change in geology. Sampling was either grab sampling from the push tube core or taken directly from the hand auger.
Soil Screening	In accordance with AS4482.2. Collected samples were screened for volatile fractions using a Photoionisation Detector (PID). This was done by placing the samples within snap lock bags and analysing the headspace with a PID probe. A service record for GES's PID is included in Appendix 6 for the second round of sampling.
Sample Selection	A minimum number of samples were carefully selected which would provide enough information to identify hydrocarbon contamination in soils.
Sample preservation	Samples were placed into a jar for laboratory analysis. Soil jars were placed in a pre-chilled cool box with ice bricks.
Sample holding times	Sample holding times were within acceptable range (based on NEPM B3-2013) from collection to extraction.

Table 3 Summary of Soil Sampling Methods

4.2.3 Soil Analysis

Primary and QC samples were submitted to Analytical Laboratory Services (ALS) Environmental, Springvale Avenue in Melbourne for analysis. Inter lab duplicate split sample was sent to ALS Environmental, located in Smithfield, NSW. All 16 samples were selected for analysis which included TPH/TRH, BTEX, PAH, and a suite of 15 Metals. PCB and cyanide were tested in two samples only.

Chain of Custody (COC) documentation was completed and is provided in Appendix 7 plus the Sample Receipt Notification (SRN) for each batch presented in Appendix 8. Table 4 presents a summary of the laboratory analyses undertaken for the soil samples.

Table 4 Overview of Soil Analysis and Quality Control

Analytes	Primary Soil Samples	Duplicates ^a	IIS ^b	Rinate Blank ^c
TPH/TRH	16	1	1	1
BTEX	16	1	1	1
PAH	16	1	1	1
15 Metals	16	1	1	1
PCB/ Cyanide	2	-	-	-

Sampling Quality Control Standards (AS4482):

a – One (1) in twenty (20) inter laboratory duplicate samples b - One (1) in twenty (20) intra laboratory split (ILS) samples

c - Single Rinsate Blank sample per piece of equipment per day

Given that a full 15 metal suite was analysed in 4 samples, there was requirement to assess the following soil physical properties to determine soil threshold investigation levels:

- Soil grain class (sand/silt or clay) •
- % Clay content; •
- Cation exchange capacity; and
- Soil pH

The soil physical properties were assessed through site assessment and chemical properties were based on knowledge of similar soil types encountered around Launceston.

5 QUALITY CONTROL

All Field and laboratory Quality Assurance and Quality Control (QA/QC) details, outputs and reports are presented in Appendix 8.

5.1 Field

It is standard to expect up to 10% error in field duplication and up to 10% laboratory error. Therefore, in theory up to 20% error can be assumed on duplicate analysis. Some variation may exist in soil and groundwater because even though all efforts are made to split samples homogeneously of materials may bias samples in certain elements.

Relative Percentage Differences (RPDs) for the duplicate and triplicate samples where applicable are calculated using the method outlined below.

The acceptance criteria used for the RPDs depend on the levels of contaminants detected and the laboratory's Method Detection Limits (MDL). The closer the levels detected are to the MDL the greater the acceptable RPD. RPDs are calculated as follows:

- RPD <50% for low level results (<20 * MDL)
- RPD <30% for medium level results (20-100 * MDL)
- RPD <15% for high level results (>100 * MDL)
- No limit applies at <2 * MDL (Method Detection Limit)

Field QA/QC procedures and compliance are summarised in Table 5.

QA/QC Requirement	Complian ce	Comments
Appropriate sampling strategy used, and representative samples collected	Yes	Sampling program was undertaken in accordance with AS4482.1-2005
Appropriate and well documented sample collection, handling, logging and transportation procedures.	Yes	Appropriate and well documented
Decontamination	Yes	Appropriate decontamination such as cleaning tools before sampling and between sample locations was undertaken
Chain-of-custody documentation completed	Yes	COC were completed in accordance with NEPM Schedule B2, Section 5.4.5 and transported under strict COC procedures. The signed COC documents are included in this report, which includes the condition report on arrival of samples to the Laboratory, cross checking of sample identification and paperwork and preservation method.
Required number of splits: Duplicate & inter-lab splits:1 per 20 primary samples	Yes	A total of 16 Primary samples were selected for analysis;1 duplicate and 1 ILS sample was required.
QA/QC samples reported method detection limits within indicated guidelines.	Yes/No	For Duplicate and BH05 0.5-0.6 pairs, 84% of analytes complied. For INTER LAB SPLIT and BH06 0.5-0.6 pairs, there were no non-compliances.
Trip blanks collected with no laboratory detections?	Yes	According to AS4482.2-1999, N/A not required
Required numbers of rinse blank samples collected with no laboratory detections?	Yes	One rinse blank was collected as per AS4482.1-2005. Rinse blank sample was clean (all COPC's <lor) adequate<br="" indicating="">field procedures were employed to reduce the risk of cross contamination between samples.</lor)>
Samples delivered to the laboratory within sample holding times and with correct preservative	Yes	All samples were sent to the laboratory within holding times and correct preservative.

Table 5 Field QA/QC procedures and Compliance

5.2 Laboratory

Laboratory QA/QC procedures and compliance are summarised in Table 6.

A /OC Descriptions and	Compliance	Commente					
QA/QC Requirement	Compliance	Comments					
All analyses NATA accredited	Yes	ALS Laboratories is INATA Accredited. Appropriate analytical methods used, in accordance with Schedule B(3) of the NEPM ASC 2013. Acceptable laboratory limits of reporting (LORs) adopted.					
Method Blanks: zero to <practical limit<br="" quantitation="">(PQL)</practical>	Yes	There were no method blank value outliers in the QC1 report.					
Laboratory Control Samples: 70% to 130% recovery for soil.	Yes	There were no laboratory control outliers in the QC1 report.					
Matrix spikes: 70% to 130% recovery for organics or 80%- 120% recovery for inorganics	Yes	There were no matrix spike outliers in the QC1 reports.					
Duplicate Samples: 0% to <20% RPD.	Yes	There were no duplicate sample outliers.					
Surrogates: 70% to 130% recovery	Yes	There were no surrogate recovery outliers.					
Analysis holding time outliers	Yes	No hold-time outliners exist for the QCI report.					
Quality Control Sample Frequency Outliers	No	The following duplicate frequency outliers were identified: PAH/Phenols (GC/MS - SIM) with 0% and 10% expected TRH - Semivolatile Fraction with 0% and 10% expected The following matrix spike frequency outliers were identified: PAH/Phenols (GC/MS - SIM) with 0% and 5% expected TRH - Semivolatile Fraction with 0% and 5% expected (EM1908628)					

 Table 6 Soil Laboratory QA/QC Procedures and Compliance

There were no outliners for the inter-laboratory duplicate split sample (ES19417553) or the rebatch analysis (EM1909096).

6 FIELD INVESTIGATION FINDINGS

6.1 Site Walkover

The site visit was conducted on the 31st May 2019. See site photographs in Plate 2 and Plate 3; additional photographs are presented in Appendix 5.

Plate 2 View across the Investigation Area to the northwest; York Park Stadium.

Plate 3 View across the Investigation Area to the northeast; Academy of the Arts building

Geo Environmental Solutions – GES

6.2 Soil Bores

Pictorials of borehole material are presented in Appendix 5 and borehole logs are presented in Appendix 9. During the soil sampling no groundwater was encountered however there was a slight sheen to the material at 1.6m bgs.

6.2.1 Geological Interpretation

In general, the Mineral Resources Tasmania (MRT) geological mapping was consistent with the ground conditions encountered during the investigation. The profile of BH01 to BH08-1 comprised 0.0 to 0.20 m of ASPHALT; 0.20 - 0.80 M Silty SAND black, mixed, trace clay, gravels and charcoal, moist medium dense; 0.80 m to 1.20 m silty CLAY black mixed, high plasticity, moist firm consistency and 1.20 m to 2.0 m Clayey SILT olive brown, moist medium dense consistency.

Sediments in this area are considerably think as confirmed by Pitt & Sherry 2009 in BH_SL12, see Figure 5 where dolerite was encountered in at 18 m bgs. This was confirmed during the current investigation as no rock was encountered.

6.2.2 Grain Class Interpretation

Grain size classifications are applied to all soils at the site to determine threshold screening level concentrations for hydrocarbons to assess soil ecological and human health risks.

Grain class threshold values are determined based on either the:

- sample grain size (in the case of ecological screening levels or chromium limits); or
- average grain class overlying the sample point (when assessing petroleum vapour screening levels).

When assessing petroleum vapour intrusion screening levels, where soil is proposed to be excavated from the site, the excavated material is excluded from the grain class averaging. The corresponding depth class from which the sample is collected is also shallowed based on the renewed basement depth. Table 7 provides a summary of the grain class averages for material overlying the sample.

	Red		Soil Grain Size Class Averaging Above Soil Sample											Attenuation		tion	HSL								
Sample	Footing Excavation Depth ^A - I Fill Thickness ^A - Green	Sample PVI Depth (m) Relative to Slab/Cut Depth	GW	GP	GМ	GC	sw	SP	SM	sc	ML	CL	OL	мн	СН	он	СІ	Rock (R)	Existing Pavement (P)	Crawl Space Thickness (m)	Proposed CONCRETE (CH)	Crawl Space	Biodegradation	Petroleum Vapour Intrusion Grain Class*	SAMPLE USCS
BH01 0.5-0.6	0.4	1.1	0.4								0.3								0.2	NA	0.2	1.0	1.0	CLAY	ML
BH01 1.4-1.5	0.4	2.0	0.4								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH02 0.5-0.6	0.3	1.2	0.5								0.3								0.2	NA	0.2	1.0	1.0	SAND	ML
BH02 1.4-1.5	0.3	2.1	0.5								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH03 0.5-0.6	0.4	1.1	0.4								0.3								0.2	NA	0.2	1.0	1.0	CLAY	ML
BH03 1.4-1.5	0.4	2.0	0.4								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH04 0.5-0.6	0.3	1.2	0.5								0.3								0.2	NA	0.2	1.0	1.0	SAND	ML
BH04 1.4-1.5	0.3	2.1	0.5								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH05 0.5-0.6	0.3	1.2	0.5								0.3								0.2	NA	0.2	1.0	1.0	SAND	ML
BH05 1.4-1.5	0.3	2.1	0.5								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH06 0.5-0.6	0.5	1.0	0.3								0.3								0.2	NA	0.2	1.0	1.0	CLAY	ML
BH06 1.4-1.5	0.5	1.9	0.3								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH07 0.5-0.6	0.5	1.0	0.3								0.3								0.2	NA	0.2	1.0	1.0	CLAY	ML
BH07 1.4-1.5	0.5	1.9	0.3								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML
BH08 0.5-0.6	0.5	1.0	0.3								0.3						_		0.2	NA	0.2	1.0	1.0	CLAY	ML
BH08 1.4-1.5	0.5	1.9	0.3								0.8				0.4				0.2	NA	0.2	1.0	1.0	CLAY	ML

Table 7 Summary of Grain Class Based on USCS Classification - BH01 - BH08

7 SOIL ECOLOGICAL IMPACT ASSESSMENT

7.1 Protected Environmental Values

The requirement for protecting soil from contaminated activities in Tasmania is managed under the Environmental Management and Pollution Control Act 1994 (EMPCA) which states in Part 5A:

(2) An area of land is a contaminated site if -

(a) there is in, on or under that area of land a pollutant in a concentration that –

(i) is above the background concentration; and

(ii) is causing or is likely to be causing serious or material environmental harm or environmental nuisance, or is likely to cause serious or material environmental harm or environmental nuisance in the future if not appropriately managed;

Potential soil impact at the site is assessed through application of the following environmental investigation guidelines.

7.2 NEPM ASC (2013) Guidelines

The following ecological investigation guidelines are to be addressed to assess acceptable levels of risk to terrestrial ecosystems:

- NEPM ASC (2013) Ecological Investigation Levels (EIL's) have been developed for selected metal and organic substances. EIL's depend on specific soil and physicochemical properties and land use scenarios and generally apply to the top two (2) metres of the soil profile (NEPM 2013);
- NEPM ASC (2013) Ecological Screening Levels (ESL's) have been developed for selected petroleum hydrocarbon compounds and total petroleum hydrocarbon fractions. ESL's broadly apply to coarse- and fine-grained soils and various land use scenarios within the top two (2) metres of the soil profile (NEPM ASC 2013).

Soil analytical results are compared against Ecological Screening Levels (ESL's) and Ecological Investigation Levels (EIL's) limits presented in Table 8.

		Analytes Investigated												
Investigation	Hydrocarbo	ns		Metals										
	Levels (IL)	BTEX	TRH (F1 to F4)	Benzo(a) pyrene (PAH)	Naphthalene (PAH)	Zn, Cu, Cr(III), Ni & As	DDT							
	ESL's	Analysed	Analysed	Analysed			$\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{\mathbf{$	\backslash						
	EIL's	\backslash	\land		Analysed	Analysed	Analysed	Not Analysed						

Table 8 Summary of Soil Investigation Limits Considered at the Site based in NEPM ASC (2013)

7.3 Guidelines

7.3.1 Ecological Screening Levels

The following compounds were compared against NEPM (2013) Ecological Screening Levels (ESL's):

- BTEX;
- F1 to F4 TRH; and
- Benzo(a)pyrene

Selection of ESL threshold investigation limits are set out in the NEPM (2013) guidelines and require classification of the soil according to:

- Land use sensitivity:
 - Areas of ecological significance
 - Urban residential and public open space; and
- Dominant particle size passing through a 2 mm sieve into:
 - Coarse sand sizes and greater; and
 - Fine clay and silt sizes.

Adopted NEPM (2013) soil and land use classifications are presented below.

Geo Environmental Solutions – GES

7.3.2 Ecological Investigation Levels

The following compounds were compared against Environmental Investigation Levels:

- Lead;
- Nickel;
- Chromium;
- Zinc;
- Copper;
- Arsenic; and
- Naphthalene.

There was a requirement to classify the soil according to physicochemical properties given that the above listed compounds. Selection of EIL threshold investigation limits are set out in the NEPM ASC (2013) guidelines and require classification of the soil per specific soil and physicochemical properties which are presented in the results tables.

Given the surround sensitive land use of residential/ public open spaces, these guidelines have been applied to the EILS. pH tested in 4 samples and ranged from 5.4-7.7.

7.4 Findings

7.4.1 Ecological Screening Levels

Laboratory analytical results for soil are presented in Appendix 10. Table 9 summaries all soil analytical results against relevant ESLs guideline limits for urban residential/ public open spaces land use. Concentrations which exceed laboratory limits of reporting (LOR) are highlighted in bold. ESL exceedances are highlighted with a coloured cell. Samples within the proposed excavation zone are marked with an X.

A total of 6 of the 16 primary samples had detections above laboratory LORs. A total of 6 samples had hydrocarbon detections above the ESL guideline limits for urban residential/ public open spaces and included the following exceedances:

- One sample had a laboratory detection for TRH Fraction F2 and another had a detection of benzene.
- A total of all 2 samples that had ESL exceedances were for TRH Fraction F3 (Borehole #1); 2 additional samples had laboratory detections but were below guideline limits.
- A total of 8 samples from 16 samples were clean and had no detections; the majority of which were deeper at 1.4-1.5m bgs.

The following was also observed as illustrated in Figure 8:

- The ESL exceedances were localised in BH01.
- The hydrocarbon detections were at 0.5-0.6m bgs,
- Deeper soil samples at 1.5-1.6m bgs were generally free of hydrocarbon contamination.
- Groundwater was not encounter even though boreholes were 2.2-2.4m above sea level with the North Esk River, approximately 200m to the east of the investigation area.

Therefore, as best practice a Contamination Management Plan (CMP) will be required to manage soil/ water run off during construction to ensure contaminated soil or surface water does not enter the waterways.

Table 9 S	Summary of Soil Analytical I	Results Compared with	Ecological Screening	Level's for urban	residential/
public op	oen spaces – BH01-BH08				

NEPM Ecological S	creening Leve	ls for So	il		BT	ΈX		PAH		TRH		
Bold - Indicates LOR Exceedances X - Indicates Sample has been Excavated Colour Shading - Indicates ESL Exceedances: >1 x, * 2-5 x, ** 5-20 x, *** 20-50 x, **** >50 x					Toluene	Ethylbenzene	Xylenes	Benzo(a)pyrene	F1 (C6 - C10)	F2 (>C10 - C16)	F3 (>C16 - C34)	F4 (>C34 - C40)
<u>_</u>	Date	e Class arse)	se	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample	Sample [Soil Texture (fine /coa	Land U	LOR 0.2	LOR 0.5	LOR 0.5	LOR 0.5	LOR 0.5	LOR 10	LOR 50	LOR 100	LOR 100
BH01 0.5-0.6	31/5/19	F	URBAN	<0.2	< 0.5	< 0.5	< 0.5	<0.5	<10	<50	1620	280
BH01 1.4-1.5	31/5/19	F	URBAN	<0.2	< 0.5	< 0.5	< 0.5	< 0.5	<10	110	1540	320
BH02 0.5-0.6	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	840	130
BH02 1.4-1.5	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH03 0.5-0.6	31/5/19	F	URBAN	0.3	<0.5	<0.5	<0.5	<0.5	<10	<50	580	140
BH03 1.4-1.5	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH04 0.5-0.6	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH04 1.4-1.5	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH05 0.5-0.6	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	130	<100
BH05 1.4-1.5	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH06 0.5-0.6	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	480	140
BH06 1.4-1.5	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH07 0.5-0.6	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	980	210
BH07 1.4-1.5	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	<100	<100
BH08 0.5-0.6	31/5/19	F	URBAN	<0.2	<0.5	<0.5	<0.5	<0.5	<10	<50	150	<100
BH08 1 4-1 5	31/5/19	F	URBAN	< 0.2	< 0.5	< 0.5	< 0.5	< 0.5	<10	<50	<100	<100

Figure 8 Trail of ESL Exceedances in Soil Across the Site (Borehole #1 only)

7.4.2 Ecological Investigation Levels

Laboratory analytical results are presented in Appendix 11. Table 10 compares all soil analytical results against relevant ecological investigation limits (EIL's) for urban residential/ public open spaces land use. Concentrations which exceed laboratory LOR are detailed in the table. EIL exceedances are highlighted with a coloured cell and samples within the proposed excavation zone are marked with an X. At this stage none of the samples are proposed to be excavated.

There were four shallow soil samples, 0.5-0.6m bgs that had heavy metal detections that exceeded EIL guidelines. Details are as follows:

- BH01 copper 1x the limit
- BH02 copper 5-20x the limit
- BH03 copper, zinc 1x the limit; and Arsenic 2-5x the limit
- BH07 copper 5-20x the limit

Note some pH values were inferred and others obtained during analysis. A risk to ecological receptors in terms of EILs has been identified.

Table 10 Soil Analytical Results Compared Against Ecological Investigation Levels for urban residential/ public open spaces – BH01-BH08

NEPM Ecological	Investigati												
Bold - Indicates L X - Indicates San	OR Exceed mple With	ances iiin Inferre	d Exca	vation									
Colour Shading >1 x, * 2-5 x, ** !													
Q	Date	l Use ity Class	(cmolc/kg)		ture Class oarse)	Copper (CEC)	Copper (pH)	Nickel	Zinc	Chromium III	Lead	Arsenic	Naphthalene
Sample	Sample	EIL Land Sensitiv	Soil CEC	Soil pH	Soil Tex (fine /c	mg/kg	mg/kg	mg/kg	g/kg	mg/kg	mg/kg	mg/kg	mg/kg
BH01 0.5-0.6	31/5/19	URBAN	20	7.7 (1)	F	411	411	47	283	65	228	18	<1
BH01 1.4-1.5	31/5/19	URBAN	20	6.25 (3)	F	46	46	68	77	65	23	8	<1
BH02 0.5-0.6	31/5/19	URBAN	20	6.25 (3)	F	1850**	1850**	45	345	39	167	13	<1
BH02 1.4-1.5	31/5/19	URBAN	20	6.25 (3)	F	19	19	25	49	64	11	10	<1
BH03 0.5-0.6	31/5/19	URBAN	20	6.25 (3)	F	379	379	42	436	38	550	307*	<1
BH03 1.4-1.5	31/5/19	URBAN	20	5.6 (1)	F	23	23	33	57	58	15	11	<1
BH04 0.5-0.6	31/5/19	URBAN	20	6.25 (3)	F	86	86	10	136	7	119	18	<1
BH04 1.4-1.5	31/5/19	URBAN	20	6.25 (3)	F	19	19	25	48	63	10	10	<1
BH05 0.5-0.6	31/5/19	URBAN	20	6.25 (3)	F	159	159	16	206	10	229	31	<1
BH05 1.4-1.5	31/5/19	URBAN	20	6.25 (3)	F	16	16	31	51	76	9	8	<1
BH06 0.5-0.6	31/5/19	URBAN	20	6.3 (1)	F	166	166	21	125	19	211	24	<1
BH06 1.4-1.5	31/5/19	URBAN	20	5.4 (1)	F	18	18	32	52	64	11	8	<1
BH07 0.5-0.6	31/5/19	URBAN	20	6.25 (3)	F	2280**	2280**	35	353	16	364	48	<1
BH07 1.4-1.5	31/5/19	URBAN	20	6.25 (3)	F	22	22	50	65	66	11	9	<1
BH08 0.5-0.6	31/5/19	URBAN	20	6.25 (3)	F	62	62	11	63	6	74	40	<1
BH08 1.4-1.5	31/5/19	URBAN	20	6.25 (3)	F	14	14	25	50	66	11	12	<1

pH Designation:

1) Using 0.01M CaCl2 extract. Rayment, G.E. and Lyons, D.J. (2011). "Soil Chemical Methods – Australasia". 495+20 pp. CSIRO Publishing, Melbourne.

2) pHF (1:5). Adjusted by subtracting 0.75 with +/- 0.25 error to calibrate to the CaCl2 method (per comm. ALS Brisbane Acid Sulphate Soils Laboratory). Methods in accordance with Ahern, C.R., Stone Y., and Blunden B. (1998b). 'Acid Sulphate Soils Assessment Guidelines'. Acid Sulphate Soils Management Advisory Committee, Wollongbar, NSW, Australia.

3) Classified in accordance with parent material typical soil pH as per the Tasmanian soils database / or on-site testing

8 SOIL HUMAN HEALTH DIRECT CONTACT ASSESSMENT

8.1 Guidelines

Guidelines presented herein are based on potential exposure of human receptors to soil impact which may include:

- Onsite excavation works which may include basement carpark and deep foundations. Receptors include onsite commercial contractors, offsite residential receptors as well as sensitive land use and recreational receptors;
- Proposed future onsite residential land users which may be exposed to potential shallow soil impact in non-paved areas of the site not likely given the entire site will be sealed by a concrete carpark;
- Trench workers repairing or building services (typically to 1 m bgs) as assessed against commercial worker guidelines for dermal contact and HIL's.

8.1.1 Land Use Classification

The NEPM (2013) guidelines have been referenced to ensure that the correct land use and density category has been adopted for the site and the surrounding properties (where applicable). As per NEPM (2013) guidelines, the adopted land use class is dependent on the building density and the opportunity for soil access by site occupants (exposure to potentially impacted soil). Aspects needing to be considered include:

- Whether the site is of sensitive land use such as a childcare centre, preschool, primary school or aged care facility in which case land use Class A is applicable;
- The proportion of paved area to determine direct contact exposure risk and therefore classification as low or high density; and
- Classification based on residential, recreational or commercial/industrial setting.

8.1.2 Adopted Land Use Classification

The adopted land use class is presented in Table 11.

|--|

Soil Bores	Construction Phase	Location	Land Use	Pathway*	Land Use Class
	During	Site	Commercial contractors	ALL	D
		Offsite	Recreational land use – surrounding open spaces	ALL	С
			Commercial users – Art School	DI	D
	Post	Site	Commercial users – Art School	ALL	D
			Recreational land use – surrounding open spaces	ALL	С
			Trench Workers	ALL	D & Standard

* Pathways:

DC – Dermal Contact – HSL Trench Worker Guidelines (CRC CARE 2013); DI – Dust Inhalation - HIL Guidelines (NEPM ASC 2013); SI – Soil Ingestion - HIL Guidelines (NEPM ASC 2013); ALL – All of above

8.2 Findings

8.2.1 Dermal Contact - Petroleum Hydrocarbons

Laboratory analytical results are presented in Appendix 11. Table 12 presents soil hydrocarbon analytical results compared against CRC CARE (Friebel & Nadebaum, 2011) Health Screening Levels (HSL) guidelines for assessing dermal contact risk HSL C, HSL D and Trench workers. Concentrations which exceeded laboratory LOR are highlighted in bold. HSL exceedances would be highlighted with a coloured cell indicating the highest HSL land used class which is exceeded. Samples within the proposed excavation zone would be marked with an X.

There were detections of hydrocarbons in 8 of the 16 samples sent for analysis, most detections were in the shallow samples (0.5-0.6m bgs). There were higher detections in both samples from BH01. There were no exceedances above the HSL C guidelines for *recreational use*, HSL D guidelines for *commercial/industrial land use* or *to trench workers* for Dermal Contact. Therefore, no dermal contact risk has been identified.

			EP	080: BTEX	٢N	EP080/071: TRH							
Dermal Conta	Health Screening Level act Hazard from Soil rocarbons'	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	C6 - C10 Fraction	>C10 - C16 Fraction	>C16 - C34 Fraction	>C34 - C40 Fraction			
Units		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg			
LOR		0.2	0.5	0.5	0.5	1	10	50	100	100			
HSL C Recreat	tional	120	18000	5300	15000	1900	5100	3800	5300	7400			
HSL D Comme	ercial/Industrial	430	99000	27000	81000	11000	26000	20000	27000	38000			
Intrusive Mai	ntenance Worker	1100	120000	85000	130000	29000	82000	62000	85000	120000			
Date	Sample												
31/05/2019	BH01 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	1620	280			
31/05/2019	BH01 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	110	1540	320			
31/05/2019	BH02 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	840	130			
31/05/2019	BH02 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH03 0.5-0.6	0.3	<0.5	<0.5	<0.5	<1	<10	<50	580	140			
31/05/2019	BH03 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH04 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH04 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH05 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	130	<100			
31/05/2019	BH05 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH06 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	480	140			
31/05/2019	BH06 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH07 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	980	210			
31/05/2019	BH07 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			
31/05/2019	BH08 0.5-0.6	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	150	<100			
31/05/2019	BH08 1.4-1.5	<0.2	<0.5	<0.5	<0.5	<1	<10	<50	<100	<100			

8.2.2 Dust Inhalation & Soil Ingestion

Laboratory analytical results are presented in Appendix 11. Table 13 presents the soil analytical results compared against combined dust inhalation and soil ingestion risk is assessed through the application of NEPM (2013) Health Investigation Levels (HILs) for exposure to soil contaminants. Concentrations which exceeded laboratory LOR are highlighted in bold, metals are simply reported. HIL exceedances are highlighted with a coloured cell indicating the highest HIL land used class which is exceeded. Samples within the proposed excavation zone are marked with an X.

There were no HIL D *commercial land use* exceedances at the site. There was one HIL C exceedance for *recreational land use*. This was arsenic in BH03 at 0.5-0.6m bgs. During construction a contamination Management Plan must be used to manage the risk; see recommendations.

Bold - Indicates LOR Exceedance in Non Metalic Compounds	EA002 : pH (Soils)	EA055: Moisture Content	EG005	5T: Tot	al Me	etals by IC	CP-AES										EG035T: Total Recoverable Mercury by FIMS	EP066:	EP07:	5(SIM)	B: Poly	nuclea	ır Aro	matic I	łydroc	arbo	ns							
NEPM Health Investigation Levels (HIL's) Dust Inhalation and Soil Ingestion Assessment X - Indicates Sample Within Proposed Excavation Zone	pH Value	Moisture Content	Arsenic	Barium	Beryllium	Boron	Cadmium	Chromium Total	Cobalt	Copper	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	Mercury	PCBs	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	r nenanunene Anthracana	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b) fluor anthene	Benzo(k)fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd) pyrene	Dibenz(a.h)anthracene	benzo(g.n.i) perylene	PAHs Benzo(a)pyrene TEQ (WHO)
Units	pH Unit	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ma/ba	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg mg/kg
LOR	0.1	1	5	10	1	50	1	2	2	5	5	5	2	S	5	5	0.1	0.1	0.5	0.5	0.5 (.5 0	5 0.	5 0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0	.5 0).5 0.5
HIL C Recreational	🗹 HIL C		300		90	20000	90		300	17000	600	19000	1200	700		30000	80	1															3	00 3
HIL D Commerial/Industrial	🗹 HIL D		3000		500	300000	900		4000	240000	1500	60000	6000	10000		400000	730	7															40	000 40
Sample date: Sample ID																																		
31/05/2019 BH01 0.5-0.6	7.7	18.8	18	240	<1	<50	4	65	12	411	228	377	47	\$	40	283	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH01 1.4-1.5		44.2	8	80	2	<50	<1	65	16	46	23	176	68	<5	53	77	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH02 0.5-0.6		9.7	13	160	<1	<50	2	39	10	1850	167	622	45	<5	20	345	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH02 1.4-1.5		41.6	10	40	2	<50	<1	64	7	19	11	81	25	<5	78	49	<0.1	<0.1	<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH03 0.5-0.6		19	307	580	<1	<50	2	38	10	379	550	462	42	<5	29	436	0.2		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 0.8	0.7	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5	2 <0.5
31/05/2019 BH03 1.4-1.5	5.6	40.3	11	20	2	<50	<1	58	11	23	15	69	33	<5	64	57	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH04 0.5-0.6		16.7	18	50	<1	<50	<1	7	4	86	119	187	10	<5	12	136	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH04 1.4-1.5		42.5	10	20	2	<50	<1	63	8	19	10	68	25	<5	69	48	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH05 0.5-0.6		14.3	31	50	<1	<50	<1	10	5	159	229	147	16	<5	17	206	0.2		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH05 1.4-1.5		39.8	8	20	2	<50	<1	76	11	16	9	95	31	<5	66	51	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH06 0.5-0.6	6.3	19.8	24	80	<1	<50	<1	19	5	166	211	205	21	<5	46	125	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	o <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH06 1.4-1.5	5.4	41.6	8	20	2	<50	<1	64	8	18	11	64	32	<5	69	52	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH07 0.5-0.6		27.4	48	160	<1	<50	1	16	9	2280	364	461	35	<5	19	353	2.3	<0.1	<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 0.9	1.0	0.5	<0.5	0.6	<0.5	<0.5	<0.5 <	:0.5 <0).5	3 <0.5
31/05/2019 BH07 1.4-1.5		39.5	9	20	2	<50	<1	66	19	22	11	100	50	<5	60	65	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH08 0.5-0.6		18.6	40	60	<1	<50	<1	6	4	62	74	120	11	<5	11	63	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	< 0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5
31/05/2019 BH08 1.4-1.5		40.3	12	30	1	<50	<1	66	8	14	11	74	25	<5	82	50	<0.1		<0.5	<0.5	<0.5 <	0.5 <0	.5 <0	.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <0).5 <	0.5 <0.5

Table 13 Soil Analytical Results Compared Against NEPM (2013) Health Investigation Limit Guidelines – BH01-BH08

Note: cyanide was also tested in two samples; BH01 1.4-1.5 results were non detect; and BH07 0.5-0.6 cyanide was measured at 2 mg/kg. HIL C for cyanide is 240 mg/kg and for HIL D 1500 mg/kg. Thus, making the results well below guideline limits.

9 INDOOR INHABITANT PVI ASSESSMENT – HSL's

This PVI assessment has been conducted in accordance with relevant CRC CARE Technical Documentation and NEPM 2013 guidelines presented in references section of this report. The HSL assessment approach is generally the first (Tier 1) investigation phase adopted for assessing PVI risk at petroleum hydrocarbon (PHC) impacted sites. HSL guidelines have been applied for samples collected from the site to account for risks that may be associated with volatile hydrocarbon vapour intrusion into confined spaces where there may be an inhalation risk through longer term exposure. This does not constitute a full vapour risk assessment but provides additional information from which to further quantify any risk.

A detailed investigation (Tier 2 to 3) is recommended over an HSL assessment where an acute risk has been identified at the site (CRC CARE 2013) because of:

- Migrating product on surface soils beneath buildings;
- Strong PHC odours;
- Flammable risk in confined spaces; and/or
- Health complaints from occupants.

Based on the site visits, none of the above conditions have been identified at the site. If the outcome of this Tier 1 assessment reveals HSL exceedances for hydrocarbon vapour intrusion, a more detailed (Tier 2) assessment will be required to further evaluate the human health risk.

PVI risk is initially interpreted through the development of HSL threshold limits from the following classifications:

- The geology and or hydrogeology of the investigation point; and
- Land use sensitivity:

The resulting HSL threshold limits are compared with laboratory analytical results.

9.1 Selected Media for Assessing PVI Risk

Table 14 presents a summary of the preferred HSL approach to assessing PVI risk. In this case, all soil investigated was within the excavation zone and within the water table.

Media Analysed	Method	Limitations	Order of Preference				
Soil Gas	Concentrations of a soil gas through a soil vapor probe	This approach provides the most reliable data in interpreting PVI risk, although direct modelling should be applied if concentrations exceed HSL threshold limits.	Primary				
Groundwater	Concentrations of PHC in groundwater through deployment of monitoring wells	 More robust and reliable that soil in determining onsite and in particular, offsite risks. Determining PVI risk based on groundwater is inherently conservative when interpreting vapour risk to account for not readily discernible preferential pathways. Reference may be drawn to alternative assessment approaches: Application of site-specific conditions to the CRC CARE model for assessing PVI risk Soil gas interpretation for areas where a PVI risk is identified from groundwater analysis. 	Secondary				
Soil	Concentrations of PHC in soil	Concentrations in soil may be subject variability due to soil moisture, organic content and oxygen ingress all which create significant bias in threshold values. Reliance is place on utilizing groundwater analysis over soil. Soil results provide localised information.	Tertiary				

 Table 14 Preferred Methods for Determining Site PVI Risk
9.2 Land Use Class

For surrounding properties, the potential PVI risk is characterized through application of CRC CARE HSL's for each individual property based on their existing land use (NEPM 2013; Friebel & Nadebaum 2010). The CRC CARE guidelines have been referenced to ensure that the correct land use and density category has been adopted for surrounding land use to ensure health risks are consistent with the HSL models. Aspects considered include the:

- Sensitivity of the existing or potential land use;
- Percentage of paved area for defining potential vapour migration risk;
- Type of basement garage which may influence the confinement of PHC vapours;
- Presence of a slab or cavity for discerning vapour intrusion risk.

If hydrocarbon impacted soil is discerned at the site, consideration is given to downgradient receptors. Where applicable, land use class therefore considers:

- Downgradient receptors where onsite HSL exceedances have been identified in soil; and
- Variations in land use for different parts of the proposed development.

The following land use classes are applied:

• HSL D for all commercial spaces within the student services building and adjacent buildings.

9.3 Soil Assessment

Laboratory analytical results are presented in Appendix 11. Table 15 presents the results against a potential indoor vapour risk. Concentrations which exceeded laboratory LOR are highlighted in bold. HSL exceedances are highlighted with a coloured cell. Although there were detections in two samples; results were below guideline limits. Therefore no the indoor vapour risk has been identified associated with soil impact.

Soil Hydrocarbo Intrusion (NEPI Soil Sample An	on HSL's for As M 2013) alysis	sessing Indoo		EP	EP080/0)71: TRH					
Bold - Indicates L	OR Exceedances				υ	0	nzene	/lenes	alene		
Colour Shading >1 x, * 2-5 x, **	g - Indicates HS * 5-20 x, *** 20	L Exceedances -50 x, **** >50	Benzen	Toluene	Ethylbe	Total X _\	Naphth	F1	F2		
Sample ID	Sample Date	Dopth Class	Grain	цсі	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sample ID	Sample Date	Depth Class	Class	IJL	LOR 0.2	LOR 0.5	LOR 0.5	LOR 0.5	LOR 1	LOR 10	LOR 50
BH01 0.5-0.6	31/05/2019	1 - 2	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH01 1.4-1.5	31/05/2019	1 - 2	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	110
BH02 0.5-0.6	31/05/2019	1 - 2	SAND	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH02 1.4-1.5	31/05/2019	2 - 4	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH03 0.5-0.6	31/05/2019	1 - 2	CLAY	D	0.3	<0.5	<0.5	<0.5	<1	<10	<50
BH03 1.4-1.5	31/05/2019	1 - 2	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH04 0.5-0.6	31/05/2019	1 - 2	SAND	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH04 1.4-1.5	31/05/2019	2 - 4	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH05 0.5-0.6	31/05/2019	1 - 2	SAND	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH05 1.4-1.5	31/05/2019	2 - 4	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH06 0.5-0.6	31/05/2019	0 - 1	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH06 1.4-1.5	31/05/2019	1 - 2	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH07 0.5-0.6	31/05/2019	0 - 1	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH07 1.4-1.5	31/05/2019	1 - 2	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH08 0.5-0.6	31/05/2019	0 - 1	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH08 1.4-1.5	31/05/2019	1 - 2	CLAY	D	<0.2	<0.5	<0.5	<0.5	<1	<10	<50

Table 15 Soil Analytical Results Compared Against HSL D for Indoor Vapour Risk – BH01-BH08

10 TRENCH WORKER PVI ASSESSMENT - HSL's

10.1 Classification

The following Health Screening Assessment is based on hydrocarbon vapour intrusion risk to subsurface excavation workers within excavations. This is assessed through analysis of vapours from soil and soil vapours. Groundwater is generally not used to assess risk as threshold limits for all depth and grain classes are non-limiting. Land use classes are not applicable when assessing vapour intrusion into trenches.

Soil and soil vapour HSL's for assessing hydrocarbon risk to maintenance workers are based on CRC CARE Technical Report 10 guidelines (Friebel & Nadebaum 2011) and the following variables:

- Dominant grain size class of material at the soil sample depth or based on the dominant grain class of the backfill material based on US Agriculture Soil Classification System (SCS) and partitioning into either sand, silt or clay; and
- Classifying soil according to depth ranges: 0 to 2 m; 2 to 4 m; 4 to 8 m; and greater than 8 m;

10.2 Findings

Laboratory analytical results are presented in Appendix 11. Summary of Soil Analytical Results Compared against HSL's for Assessing PVI Risk to Trench Workers are presented in Table 16. Concentrations that exceeded laboratory LOR are highlighted in bold, and if there were any HSL exceedances they would be highlighted with a coloured cell. There were no exceedances of the CRC CARE HSL guidelines for Assessing PVI Risk to Trench Workers and no risk identified.

CRC CARE Health Screer for PHC Inhalation Risk Soil Sample Analysis	ning Level Asse To Trench Wo	essment rkers Fron		EP	EP080/071: TRH					
Bold - Indicates LOR Exc Dark Grey Shading - Ind >1 x, * 2-5 x, ** 5-20 x, *	eedances icates HSL Exco *** 20-50 x, ***	eedances: ** >50 x	Benzene	Toluene	Ethylbenzene	Total Xylenes	Naphthalene	C6 - C10 Fraction	>C10 - C16 Fraction	
Sample ID	Sample Date	Depth	Grain	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Sumprens	Sumpre Bute	Class	Class	LOR 0.2	LOR 0.5	LOR 0.5	LOR 0.5	LOR 1	LOR 10	LOR 50
BH01 0.5-0.6	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH01 1.4-1.5	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	110
BH02 0.5-0.6	31/05/2019	0 to 2m	SAND	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH02 1.4-1.5	31/05/2019	2 to 4m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH03 0.5-0.6	31/05/2019	0 to 2m	CLAY	0.3	<0.5	<0.5	<0.5	<1	<10	<50
BH03 1.4-1.5	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH04 0.5-0.6	31/05/2019	0 to 2m	SAND	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH04 1.4-1.5	31/05/2019	2 to 4m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH05 0.5-0.6	31/05/2019	0 to 2m	SAND	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH05 1.4-1.5	31/05/2019	2 to 4m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH06 0.5-0.6	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH06 1.4-1.5	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH07 0.5-0.6	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH07 1.4-1.5	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH08 0.5-0.6	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50
BH08 1.4-1.5	31/05/2019	0 to 2m	CLAY	<0.2	<0.5	<0.5	<0.5	<1	<10	<50

11 SOIL DISPOSAL ASSESSSMENT

11.1 Guidelines

Soil which is excavated from the site for landfill disposal is to be assessed against Information Bulletin 105 (IB105) for Classification and Management of Contaminated Soil for Disposal. The Environmental Protection Authority (EPA) uses 4 categories to classify contaminated soil as per Table 17:

- (Level 1) Fill Material;
- (Level 2) Low Level Contaminated Soil;
- (Level 3) Contaminated Soil; and
- (Level 4) Contaminated Soil.

Fixed numerical values are presented for soil concentrations and leachable fraction concentrations.

 Table 17 Summary of IB105 Classification Guidelines

	Classification (with reference to Table 2)	Controlled Waste ¹	Comments
Fill Material ²	Soil that exhibits levels of	Unlikely	Soil classified as Fill Material can still
(Level 1)	contaminants below the limits defined under <i>Fill Material</i> in Table 2.		be a 'pollutant' under the Environmental Management and Pollution Control Act 1994 and needs to be responsibly managed.
Low Level Contaminated Soil (Level 2)	Soil that exhibits levels of contaminants above the limits defined under <i>Fill Material</i> but below the limits defined under <i>Low Level Contaminated Soil</i> in Table 2.	Likely	Where leachable concentrations have not been prescribed, maximum total concentrations will be used to classify the soil.
Contaminated Soil (Level 3)	Soil that exhibits levels of contaminants above the limits defined under <i>Low Level</i> <i>Contaminated Soil</i> but below the limits defined under <i>Contaminated Soil</i> in Table 2.	Yes	Where leachable concentrations have not been prescribed, maximum total concentrations will be used to classify the soil.
Contaminated Soil for Remediation (Level 4)	Soil that exhibits levels of contaminants above the limits defined under <i>Contaminated</i> <i>Soil</i> in Table 2 (regardless of the maximum total concentrations) is generally not considered acceptable for off- site disposal without prior treatment.	Yes	Soil that contains contaminants that do not have criteria for leachable concentrations (e.g. petroleum hydrocarbons), and the levels of contaminants exceed the maximum total concentrations listed in <i>Contaminated Soil</i> , are generally classified as <i>Contaminated Soil</i> for <i>Remediation</i> .

11.2 Findings

The soil samples were compared against IB105 guidelines for soil disposal, see Table 18 and Table 19. Most of the material was classified as Level 2 Material – Low Level Contaminated Soil due to the presence of multiple heavy metal detections and hydrocarbons in three samples.

Elevated metals above Level 1 classification included arsenic, beryllium, cadmium, copper, lead (in two samples only) and zinc. The following metals only exceeded IB105 in one sample; barium, manganese, mercury and nickel.

Material in two boreholes were classified as Level 3 material for Arsenic in BH03 0.5-0.6 and copper in BH07 0.5-0.6. Leachate testing confirmed that the leachable fraction of this material did not exceed Level 2 classification; therefore, this material can also be considered as Level 2 material.

Careful management of this material will be required during the excavation phase of the work; see the recommendations section of this report.

Table 18 Soil Anal	lytical Results Compared	Against IB105	Investigation Limits fo	or soil Disposal – D	ry Weight Concentrations

Informat Classificatio of Conta	tion Bulletin 105 n and Management minated Soil For Disposal	Arsenic	Barium	Beryllium	Cadmium	Chromium Total	Copper	Cobalt	Lead	Manganese	Mercury	Nickel	Selenium	Zinc	Benzo(a) pyrene	C6 - C9 Fraction	C10 - C36 Fraction (sum)	Sum of polycyclic aromatic hydrocarbons	Total Polychlorinated biphenyls	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total Cyanide
Unit		mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
LOR		5	10	1	1	2	5	2	5	5	0.1	2	5	5	0.5	10	50	0.5	0.1	0.2	0.5	0.5	0.5	1
Investigation	Level Selected																							
IB105 Level 1		<20	<300	<2	<3	<50	<100	<100	<300	<500	<1	<60	<10	<200	<0.08	<65	<1000	<20	<2	<1	<1	<3	<14	<32
IB105 Level 2		20	300	2	3	50	100	100	300	500	1	60	10	200	0.08	65	1000	20	2	1	1	3	14	32
IB105 Level 3		200	3000	40	40	500	2000	200	1200	5000	30	600	50	14000	2	650	5000	40	20	5	100	100	180	1000
IB105 Level 4	1	750	30000	400	400	5000	7500	1000	3000	25000	110	3000	200	50000	20	1000	10000	200	50	50	1000	1080	1800	2500
													_											
31/05/2019	BH01 0.5-0.6	18	240	<1	4	65	411	12	228	377	<0.1	47	<5	283	<0.5	<10	1880	<0.5		<0.2	<0.5	<0.5	<0.5	ł
31/05/2019	BH01 1.4-1.5	8	80	2	<1	65	46	16	23	176	<0.1	68	<5	77	<0.5	<10	1850	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH02 0.5-0.6	13	160	<1	2	39	1850	10	167	622	<0.1	45	<5	345	<0.5	<10	970	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH02 1.4-1.5	10	40	2	<1	64	19	7	11	81	<0.1	25	<5	49	<0.5	<10	<50	<0.5	<0.1	<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH03 0.5-0.6	307	580	<1	2	38	379	10	550	462	0.2	42	<5	436	<0.5	<10	690	1.5		0.3	<0.5	<0.5	<0.5	
31/05/2019	BH03 1.4-1.5	11	20	2	<1	58	23	11	15	69	<0.1	33	<5	57	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH04 0.5-0.6	18	50	<1	<1	7	86	4	119	187	<0.1	10	<5	136	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH04 1.4-1.5	10	20	2	<1	63	19	8	10	68	<0.1	25	<5	48	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	·
31/05/2019	BH05 0.5-0.6	31	50	<1	<1	10	159	5	229	147	0.2	16	<5	206	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	·
31/05/2019	BH05 1.4-1.5	8	20	2	<1	76	16	11	9	95	<0.1	31	<5	51	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH06 0.5-0.6	24	80	<1	<1	19	166	5	211	205	<0.1	21	<5	125	<0.5	<10	580	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH06 1.4-1.5	8	20	2	<1	64	18	8	11	64	<0.1	32	<5	52	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH07 0.5-0.6	48	160	<1	1	16	2280	9	364	461	2.3	35	<5	353	<0.5	<10	1130	3	<0.1	<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH07 1.4-1.5	9	20	2	<1	66	22	19	11	100	<0.1	50	<5	65	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH08 0.5-0.6	40	60	<1	<1	6	62	4	74	120	<0.1	11	<5	63	<0.5	<10	110	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	BH08 1.4-1.5	12	30	1	<1	66	14	8	11	74	<0.1	25	<5	50	<0.5	<10	<50	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	Duplicate X	29	100	<1	<1	16	259	7	238	227	0.2	27	<5	158	<0.5	<10	760	<0.5		<0.2	<0.5	<0.5	<0.5	
31/05/2019	INTER LAB SPLIT X	20	70	<1	<1	18	179	6	191	213	<0.1	25	<5	112	<0.5	<10	440	<0.5		<0.2	<0.5	<0.5	<0.5	

Note: cyanide was also tested in two samples; BH01 1.4-1.5 results were non detect; and BH07 0.5-0.6 cyanide was measured at 2 mg/kg. Level 1 upper limit for cyanide is 32 mg/kg; therefore total cyanide can be classified as Level 1 material.

Inform	ation Bulletin 105																				3's)				
Classificatio Contamina	on and Management of ated Soil For Disposal																		(uns) ເ	EQ)	phenyls (PCE				
Lead	chable Fraction				c	m Total				ese			_		Dieldrin	DD + DDE	pyrene	raction	6 Fractior	pyrene (T	rinated bi			zene	enes
Italic/* - Bas	ed On Soil (Total) Limit	jc	Е	liun	niun	miu	er	±		gane	nry	-	ium		+	□ +	o(a)	5	S	o(a)	hlo	ene	sne	pen	Xyl
Bold - Ba	ased On Leach Limit	Arser	Bariu	Beryl	Cadn	Chro	Copp	Coba	Lead	Mang	Merc	Nicke	Selen	Zinc	Aldri	DDT .	Benz	C6 - (C10 -	Benz	Polyc	Benz	Tolue	Ethyl	Total
Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	μg/L	μg/L			μg/L	μg/L	μg/L	μg/L	μg/L	μg/L
LOR		0.1	0.1	0.05	0.05	0.1	0.1		0.1	0.1	0.001	0.1	0.1	0.1	0.5	0.5	0.5			0.5	1	1	2	2	2
Investigation I	Level Selected																								
IB105 Level 1																									
IB105 Level 2		<0.5	<35	<1	<0.1	<0.5	<10		<0.5	<25	< 0.01	<1	<0.1	<25	<3	<200	<0.5			<0.5	<1	<50	<1400	<3000	<5000
IB105 Level 3		0.5	35	1	0.1	0.5	10		0.5	25	0.01	1	0.1	25	3	200	0.5			0.5	1	50	1400	3000	5000
IB105 Level 4		5	350	4	0.5	5	100		5	250	0.1	8	1	250	30	2000	5				2	500	14000	30000	50000
																					1				
31/05/2019	BH03 0.5-0.6	<0.1	*				*		*					*											
31/05/2019	BH07 0.5-0.6	*					0.3		*		*			*					*		<0.1				

Table 19 Soil Analytical Results Compared Against IB105 Investigation Limits for soil Disposal – Leachable Fractions

Note:

Leachable fraction analysis will take precedence over soil analysis when calculating IB105 Limits.

There are no leachable fraction investigation limits for certain compounds eg. Cobalt, and therefore the solids limit is applied. Where solid Level 2 or greater exceedances are present, these are represented with a * in the sheet Leachable fraction limits are not available for Level 1 classification, and therefore a minimum leachable fraction Level 2 limit is applied if the solid results exceed Level 1 guideline limits for solids, alternatively Level 1 is applied

Leachable fraction exceedances are represented with a bold and highlighted cell and Level 2 solid exceedances are defined with italics and bold highlighting Where the herea(c) purpose (TEQ) limit is exceeded the assessment is based on acid teta limits

Where the benzo(a)pyrene (TEQ) limit is exceeded, the assessment is based on soil total limits

			and the second s			- Carton and				and the second division of the second divisio			1000
	BH07	BH07		BH05	BH05	IB105 Based On Tr	BH04	BH04	ALCONT.	IP105 Paced On To	BH02	BH02	B
IB105 Based On To	tals		IB105 Based On To	tals		Depth (m)	0.5	1.4		Depth (m)		14	12
Depth (m)	0.5	1.4	Depth (m)	0.5	1.4	Arsenic	10	31	- NUMBER	Arsenic	10	307	
Arsenic	9	40	Barium	20	80	Barium	20	50		Barium	40	580	10
Beryllium	20	<1	Bervillium	2	<1	Beryllium	2	<1	matter	Beryllium	2	<1	
Cadmium	4	<1	Cadmium	<1	<1	Cadmium	<1	<1		Cadmium	<1	2	
Chromium Total	66	6	Chromium Total	76	19	Chromium Total	63	10		Chromium Total	64	38	
Copper	22	62	Copper	16	166	Copper	19	159	A LANDER	Copper	19	379	
Cobalt	19	4	Cobalt	11	5	Cobalt	8	5		Cobalt	7	10	1.1
Lead	11	74	Lead	9	211	Lead	10	147		Lead	11	550	
Manganese	100	120	Manganese	95	205	Morcury	00	0.2		Manganese	81	462	2
Mercury	<0.1	<0.1	Mercury	<0.1	<0.1	Nickel	25	16	LP ober 2	Mercury	<0.1 25	0.2	
Nickel	50	11	Nickel	31	21	Selenium	<5	<5	Contra 10	Selecium	25	42	-
Selenium	<5	<5	Selenium	< <u>s</u>	<5	Zinc	48	206	3 24 10	Zinc	49	436	
Zinc	65	63	Zinc	-0.5	125	Benzo(a)pyrene	<0.5	<0.5		Benzolalpyrene	<0.5	<0.5	
Benzo(a)pyrene	<0.5	<0.5	C6 - C9 Eraction	<10	<10	C6 - C9 Fraction	<10	<10		C6 - C9 Fraction	<10	<10	
C6 - C9 Fraction	<10	<10	C10 - C36 Fraction (<50	580	C10 - C36 Fraction (<50	<50	32W	C10 - C36 Fraction (<50	690	
CIO - C36 Fraction (<50	110	Sum of polycyclic ar	<0.5	<0.5	Sum of polycyclic ar	<0.5	<0.5	N.S. 8	Sum of polycyclic ar	<0.5	1.5	
Total Polychlorinate	\$0.5	<0.5	Total Polychlorinate			Total Polychlorinate			1000	Total Polychlorinate	<0.1		1
Possesse	-0.2	(0.2	Benzene	<0.2	<0.2	Benzene	<0.2	<0.2	Aller	Benzene	<0.2	0.3	1
benzene	-0.2	-0.2	Tolucas	<0 E	0.5	Toluene	<0.5	<0.5	2 BIRIN	Toluene	<0.5	<0.5	
Toluene	<0.5	<0.5	Toluene	-0.5	-0.5	Ethylbenzene	<0.5	<0.5	a stran	Ethylhonanna	×0.5	-0.5	1
Ethylbenzene	<0.5	<0.5	Ethylbenzene	<0.5	<0.5	Total Vulener	<0.5	0.5		Ethylbenzene	-0.5	-0.5	-
Total Xylenes	<0.5	<0.5	Total Xylenes	<0.5	<0.5	Total Ayrenes	1 40,5	0.5		Total Xylenes	<0.5	<0.5	1
	17	1				120	0						2
6. 16	1		100 57	(H)	X	DUIDE			BHOT				-0
Show and					1	BH05					BH01	BH01	1
				1		BH05			X	IB105 Based On To	BH01 stals	BH01	
Santon - pana	BH08	BH08		/		BH05			X	IB105 Based On To Depth (m)	BH01 tals 0.5	BH01	-
IB105 Based On T	BH08 otals	BH08		1		BH05			X	IB105 Based On To Depth (m) Arsenic	BH01 tals 0.5 8	BH01 1.4 13	
IB105 Based On To Depth (m)	BH08 otals 0.5	BH08				BH05	0.4		1	IB105 Based On To Depth (m) Arsenic Barium	BH01 tals 0.5 8 80	BH01 1.4 13 160	
IB105 Based On T Depth (m) Arsenic	BH08 otals 0.5 12	BH08 1.4 29				BHUS	04			IB105 Based On To Depth (m) Arsenic Barium Beryllium	BH01 tals 0.5 8 80 2	BH01 1.4 13 160 <1	
IB105 Based On T Depth (m) Arsenic Barium	BH08 otals 0.5 12 30	BH08 1.4 29 100				BHUS	04			IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium	BH01 tals 0.5 8 80 2 <1	BH01 1.4 13 160 <1 2	
IB105 Based On To Depth (m) Arsenic Barium Beryllium	BH08 otals 0.5 12 30 1	BH08 1.4 29 100 <1				BHUS	04			IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total	BH01 0.5 8 80 2 <1 65	BH01 1.4 13 160 <1 2 39	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium	BH08 otals 0.5 12 30 1 <1 <1	BH08 1.4 29 100 <1 <1 <1 16		3		BHUS	04			IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper	BH01 otals 0.5 8 80 2 <1 65 46	BH01 1.4 13 160 <1 2 39 1850	
IB105 Based On To Depth (m) Arsenic Barium Baryllium Cadmium Chromium Total	BH08 otals 0.5 12 30 1 <1 <1 66	BH08 1.4 29 100 <1 <1 16 259		3		BHUS	04			IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt	BH01 otals 0.5 8 80 2 <1 65 46 16	BH01 1.4 13 160 <1 2 39 1850 10	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt	BH08 otals 0.5 12 30 1 <1 <1 66 14 8	BH08 1.4 29 100 <1 <1 16 259 7				BHUS	04	103		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead	BH01 otals 0.5 8 80 2 <1 65 46 16 23 	BH01 1.4 13 160 <1 2 39 1850 10 167 502	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead	BH08 otals 0.5 12 30 1 <1 <1 66 14 8 11	BH08 1.4 29 100 <1 <1 16 259 7 238			SHO	BHU5 BH	04 • Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 01	BH01 1.4 13 160 <1 2 39 1850 10 167 622 221	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese	BH08 otals 0.5 12 30 1 <1 <1 66 14 8 11 74	BH08 1.4 29 100 <1 <1 16 259 7 238 227			вно	BHU5 BH	04 • BH	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 59	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury	BH08 otals 0.5 12 30 1 <1 66 14 8 11 74 <0.1	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2		P	вно	BHU5 BH	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Salenium	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel	BH08 otals 0.5 12 30 1 <1 <1 66 14 8 11 74 <0.1 25	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27		E	SHO	вно5 ВН	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium	BH08 otals 0.5 12 30 1 <1 <1 66 14 8 11 74 <0.1 25 <5	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27 <5		P	SHO	вно5 вн	04 BH	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc	BH08 otals 0.5 12 30 1 <1 <1 66 14 8 11 74 <0.1 25 <5 50	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27 <5 158		E	вно	вно5 вн	04 BH	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene	BH08 otals 0.5 12 30 1 <1 <1 <1 66 14 8 11 74 <0.1 25 <5 50 <0.5	BH08 1.4 29 100 <1 16 259 7 238 227 0.2 27 0.2 27 <5 158 <0.5		E	вно	BH05 BH06	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction	BH08 otals 0.5 12 30 1 <1 <1 <1 66 14 8 11 74 <0.1 25 <5 50 <0.5 <10	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27 <5 158 <0.5 <10		E	вно	вно5 ВН 7 ВН06	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction	BH08 otals 0.5 12 30 1 <1 <1 66 14 8 11 74 <0.1 25 <5 50 <0.5 <10 (1 <55 <0.5 <10 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <23 158 <0.5 <10 760		E	SHO	вно5 вн	04 Bł	-103		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate	BH01 otals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction	BH08 otals 0.5 12 30 1 (1 66 14 8 11 74 (0.1 25 (5) (0.5) (1) (1) (2) (5) (1) (2) (3) (3) (3) (3) (4) (4) (5) (4) (5) (4) (5) (5) (6) (6) (6) (6) (6) (6) (7) (6) (7) (7) (7) (7) (7) (7) (7) (7	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27 0.2 27 <5 158 <0.5 <10 760 <0.5		E	SHO	BH05 BH06	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene	BH01 tals 0.5 8 8 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.2	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 <0.2	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat	BH08 otals 0.5 12 30 1 (1 66 14 8 11 74 (0.1 25 (0.5) (0.5) (10) (1	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <5 158 <0.5 <10 760 <0.5 		е	3HO	вно5 вн	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene Toluene	BH01 tals 0.5 8 8 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.2 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 <0.2 <0.2 <0.5	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene	BH08 otals 0.5 12 30 1 4 1 66 14 8 11 74 <0.1 25 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.6 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <5 158 <0.5 <10 760 <0.5 <0.2		е	3HO	BH05 BH06	04 Bł	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene	BH01 tals 0.5 8 8 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.2 <0.5 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
IB105 Based On To Depth (m) Arsenic Barium Barium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Toluene	BH08 otals 0.5 12 30 1 (1 66 14 8 11 74 (1 25 (5) (0.1) 25 (5) (0.5)	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <5 158 <0.2 27 <5 158 <0.5 <10 760 <0.5 <0.2 <0.2		е	8	BH05 BH06	04 BH	403		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (f Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <0.5 <10 970 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
IB105 Based On To Depth (m) Arsenic Barium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Toluene Ethylbenzene	BH08 otals 0.5 12 30 1 (1 (1 (1 (1 (1 (1 (1 (1 (1	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27 <5 158 <0.2 <10 760 <0.5 <0.2 <0.5 <0.5		е	800	вно5 ВН 7 ВН06	04 Bł	-103		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Toluene Ethylbenzene Total Xylenes	BH08 otals 0.5 12 30 1 (1 (1 66 14 8 11 74 (1 25 (5) (0,	BH08 1.4 29 100 <1 <1 16 259 7 238 227 0.2 27 <5 158 <0.2 <10 760 <0.5 <0.2 <0.5 <0.5 <0.5		е	8	BH05 BH06	04 Bł	-103		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (f Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5	BH01 1.4 13 160 <1 2 39 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Total Polychlorinat Benzene Total Xylenes	BH08 0.5 12 30 1 <1	BH08 1.4 29 100 <1 16 259 7 238 227 0.2 27 <5 158 <0.5 <10 760 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		е	800	BH05 BH06 BH06 BH06 BH06	04 BH	H03		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 etals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	BH01 1.4 13 160 <1 2 399 1850 10 167 622 <0.1 45 <5 345 <0.5 <10 970 <0.5 <0.2 <0.5 <0.5 <0.5 BH03	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Total Polychlorinat Benzene Total Xylenes	BH08 otals 0.5 12 30 1 4 1 66 14 8 11 74 <0.1 25 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <5 158 <0.5 <10 760 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		е	8	BH05 BH06 BH06 BH06 BH06 BH06	04 BH	H03		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 etals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	BH01	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Total Polychlorinat Benzene Total Nylenes	BH08 otals 0.5 12 30 1 4 1 66 14 8 11 74 <0.1 25 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <5 158 <0.2 27 <5 158 <0.5 <10 760 <0.5 <0.2 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		е	8	BH05 BH06 BH06 BH06 BH06 BH06 BH06 BH06 BH06		H03		IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (f Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH01	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Toluene Ethylbenzene Total Xylenes 2000 2	BH08 otals 0.5 12 30 1 (1 (1 66 14 8 11 74 (0,1) 25 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	BH08 1.4 29 100 <1 <1 259 7 238 227 0.2 27 <5 158 <0.2 <10 760 <0.5 <10 760 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5		е	8	BH05 BH06 BH06 BH06 BH06 BH06 BH06 BH06 BH06				IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (f Sum of polycyclic ar Total Polychlorinate Benzene Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH01	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Total Polychlorinat Benzene Total Xylenes Total Xylenes IB105 Based On Totals	BH08 otals 0.5 12 30 1 (1 66 14 8 11 74 <0.1 25 <50 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	BH08		BHO	3HO 18	BH05 BH06 BH06 BH06 BH06 BH06 BH06 BH06 BH06				IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (f Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes	BH01 stals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0	BH01	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Toluene Ethylbenzene Total Xylenes IB105 Based On Totals Depth (m) Arsenic	BH08 0.5 12 30 1 <1	BH08		BHO	3H0 8	BH05 BH06 BH06 BH06 BH06 BH06 BH06 BH06 BH06				IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (f Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.	BH01	
IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction C10 - C36 Fraction Sum of polycyclic a Total Polychlorinat Benzene Toluene Ethylbenzene Total Xylenes IB105 Based On Totals Depth (m) Arsenic Barium	BH08 otals 0.5 12 30 1 (1 66 14 8 11 74 (0.1 25 (0.5) (0.	BH08		BHO	3H0 98	BH05 BH06 BH06 BH06 BH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 BBH06 Classed On Totals BBH0 Classed On Totals Barium Chromium Total Chromium Total Chromium Total	04 BH 06 BH 5 12 1 16 1 11 1 16			IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total Copper Cobalt Lead Manganese Mercury Nickel Selenium Zinc Benzo(a)pyrene C6 - C9 Fraction C10 - C36 Fraction (s Sum of polycyclic ar Total Polychlorinate Benzene Toluene Ethylbenzene Total Xylenes IB105 Based On To Depth (m) Arsenic Barium Beryllium Cadmium Chromium Total	BH01 tals 0.5 8 80 2 <1 65 46 16 23 176 <23 176 <0.1 68 <5 77 <0.5 <10 1850 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	BH01	

			CONTRACTOR OF THE	NO. AND	copper	70	2200		Leopher 1	6.3	00
Cadmium	1	3	40	400	Cobalt	8	9		Cobalt	11	4
Chromium Total	2	50	500	5000	lead	11	364		Load	15	110
Copper	5	100	2000	7500	Leau		304		Leau	13	113
Cobalt	2	100	200	1000	Manganese	64	461	April 1	Manganese	69	18/
Lead	5	300	1200	3000	Mercury	<0.1	2.3		Mercury	<0.1	<0.1
Manganese	5	500	5000	25000	Nickel	32	35	100	Nickel	33	10
Mercury	0.1	1	30	110	Selenium	<5	<5		Selenium	<5	<5
Nickel	2	60	600	3000	Zinc	52	353	12	Zinc	57	136
Selenium	5	10	50	200	Banzalalaurana	-0.5	-0.5		Banadalaurana	-0.5	-0.5
Zinc	5	200	14000	50000	benzo(a)pyrene	40.5	40.5		Benzola/pyrene	<0.5	<0.5
Benzo(a)pyrene	0.5	0	2	20	C6 - C9 Fraction	<10	<10		C6 - C9 Fraction	<10	<10
C6 - C9 Fraction	10	65	650	1000	C10 - C36 Fraction (<50	1130		C10 - C36 Fraction (<50	<50
C10 - C36 Fraction (sum)	50	1000	5000	10000	Sum of polycyclic ar	<0.5	3	1	Sum of polycyclic ar	<0.5	<0.5
Sum of polycyclic aromatic hydrocarbons	0.5	20	40	200	Total Polychlorinate		<0.1	20	Total Polychlorinate		
Total Polychlorinated biphenyls	0.1	2	20	50	Renzono	<0.2	<0.2	00.	Banana	20.2	<0.2
Benzene	0.2	1	5	50	benzene	NJ.2	NU.2	020	benzene	-0.2	~V.2
Toluene	0.5	1	100	1000	Toluene	<0.5	<0.5	1927	Toluene	<0.5	<0.5
Ethylbenzene	0.5	3	100	1080	Ethylbenzene	<0.5	<0.5		Ethylbenzene	<0.5	<0.5
Total Xylenes	0.5	14	180	1800	Total Xylenes	<0.5	<0.5	100 C C C C C C C C C C C C C C C C C C	Total Xylenes	<0.5	<0.5

Figure 9 IB105 Exceedances in Soil Across the Site

Note leachate testing for BH03 0.5-0.6 (Arsenic) and BH07 0.5-0.6 (Copper) confirmed the material can be reclassified as Level 2 Material.

12 CONCEPTUAL SITE MODEL

12.1 Primary Sources of Contamination

12.1.1 Confirmed Primary Source

Primary sources of contamination have been identified on site as the following:

- Former rail line that intersected the site;
- Storage of rail carts on site;
- Former refuelling infrastructure north of the investigation area, two USTs.

No other potential upgradient primary sources of contamination have been identified. Groundwater was not encountered.

12.1.2 Potential Primary Sources

There may be unknown potential sources of onsite impact (outside of the sampling areas) which GES are unaware of and therefore have not been investigated at this time.

12.1.3 Contaminates of Potential Concern

Contaminants of potential concern associated with these potential sources include hydrocarbons and heavy metals.

12.2 Secondary Sources of Contamination

Secondary source contamination includes impacted soil, groundwater, surface water and vapour which may originate from a primary source. Secondary sources may have a direct pathway linkage to receptors of interest.

12.2.1 Confirmed Secondary Source

No offsite (outside the footprint of proposed Building 3) sampling has been conducted, and therefore there is no confirmed offsite secondary sources of contamination. Note groundwater was not encountered therefore this is an unknown risk.

12.2.2 Potential Secondary Source

There is the potential that the offsite aquifer comprises a secondary source of hydrocarbon contamination. Soil in contact with any impacted groundwater may also comprises a secondary source.

12.3 Transport Mechanisms and Exposure Pathways

Transport Mechanisms considered as part of the CSM are presented in Figure 10 and include:

- Wind erosion/ dispersion
- Stormwater/ surface runoff
- Leaching of heavy metals from the soil
- Volatile hydrocarbon vapours sourcing from contaminated groundwater.

Exposure Pathways considered at the site are presented in Figure 10 and include:

- Dermal contact
- Dust Inhalation and Soil Ingestion
- Vapour intrusion; and
- Stormwater drains.

12.4 Potential Receptors

The following presents a summary of all potential receptors considered in the assessment.

12.4.1 Potential Ecological Receptors

There are no onsite ecological receptors. The following offsite ecological receptors have been identified:

Environmental Site Assessment – V2: Building 3; 2 Invermay Road, Invermay, June 2019

• North Esk River, approximately 200m to the east of the investigation area which feeds into the River Tamar.

Stormwater is identified as a likely pathway to these receptors. A risk to the waterways is likely through uncontrolled/unmanaged release of site groundwater into the stormwater system.

12.4.2 Potential Human Receptors

Potential current and future onsite human receptors are depictured in Figure 10 and discussed in Table 20.

Medium	Specific Receptor	Exposure risk/ Management Strategies
	Current Commercial Workers	No risk to current commercial workers in surrounding buildings as under regular circumstances have no opportunity to come in contact with soil as the site is a sealed carpark.
		Limited contamination has been identified in the soil.
	Future construction workers and trench workers	As a precautionary measure a Contamination Management Plan (CMP) should be developed to manage soil and water on the site during the site redevelopment.
Soil Impact	Future onsite inhabitants - commercial workers (University Students visiting	It is assumed that once the site redevelopment has been completed the contaminated material will be either removed and or sealed by a concrete floor level 1 of Building 3, thus mitigating the soil contact risk to future site users.
	during the day only)	No soil HSL exceedances and no vapour risk to onsite users was not identified
	Off-site Human Receptors	Neighbouring human receptors - University Students visiting during the day only – no Dermal contact risk.
	during the construction phase	HIL's dust inhalation and soil ingestion risk will be managed with the CMP.
	Off Site Ecological receptors	As there were ESL/ EIL exceedances identified at the site, there is a risk of impacted soil and water entering the stormwater system through site erosion. This will need to be managed through a dedicated CMP.
	Future construction workers and trench workers	Limited contamination has been identified in the soil and no risk to construction workers or trench workers has been identified.
Soil Impact (deep >1m)	Future onsite inhabitants - commercial workers	It is assumed that once the site redevelopment has been completed the contaminated material will be either removed and or sealed by a concrete floor level 1 of Building 3, thus mitigating the soil contact risk to future site users.
		A vapour risk to onsite users was not identified
Groundwater	Not identified	Groundwater not intercepted. Hydrocarbon contamination in groundwater is not expected as deeper soil samples at 1.5- 1.6m bgs were generally free from hydrocarbons.
Impact		There is the potential for heavy metals to be present in the groundwater, but this will not pose a risk to human health.

 Table 20 Explanatory Notes Regarding Potential Receptors

Figure 10 Conceptual Site Model

It is assumed, the soil exposure risk will only be present during the construction phase of the site redevelopment as the site is currently sealed. Post construction, any human exposure risk associated with soil impact will be dramatically reduced once the source of the contamination has been removed or sealed beneath the building.

13 CONCLUSIONS

13.1 Site History

The following can be summarised about the site history:

- The site is a low-lying area, 2-3m ASL, that formally hosted the AN TASRAIL Inveresk Railyards. Estuarine deposits underly the site overlaid with fill from 0.3-1.2m thick.
- Former potentially contaminating activities in the localised area surrounding the proposed footprint of Building 3 relate to former rail path that went across the investigation area and two former underground storage tanks (USTs) were situated approximately 20 m north of the footprint.
- The following contaminants of potential concern (COPC) are associated with hosting a railyards and have been confirmed elsewhere across the site: Total Petroleum/Recoverable Hydrocarbons (TPH/TRH); Volatile monoaromatic hydrocarbons: Benzene, Toluene, Ethylbenzene, Xylene (BTEX) and derivatives; Polycyclic Aromatic Hydrocarbons (PAH) including Benzo(a)pyrene (B(a)p) and heavy metals, in particular; antimony; arsenic; cadmium; chromium; copper; lead; mercury, tin; and zinc. Plus, chlorinated hydrocarbons including polychlorinated Biphenyls (PCB's); phenolic compounds including chlorophenols; acid or alkaline conditions; volatile organohalides including methylene chloride; cyanides and asbestos.
- It was noted that the centre of the investigation area has previously had contaminated fill removed (SEMF, 1995).

13.2 Adopted Land Use Settings

The following investigation limits/guidelines were adopted for the site for the proposed development:

- Ecosystem the following guidelines were adopted:
 - Soil Primarily urban residential and open spaces EILs and ESLs
- Current users:
 - HSL C open spaces
 - HSL D for vapour intrusion risk to trench & maintenance workers
- The period during site development works:
 - HSL D for vapour intrusion risk to onsite commercial workers;
 - CRC CARE for assessing dermal contact risk to onsite commercial workers;
 - HIL D for assessing dust inhalation and soil ingestion risk to onsite commercial workers; and
 - HIL C for assessing dust inhalation and soil ingestion risk to offsite land use receptors;
- Contamination exposure to trench workers:
 - HSL D for vapour intrusion risk based on commercial land use;
 - Trench worker guidelines for assessing dermal contact risk; and
 - HIL D for assessing dust inhalation and soil ingestion risk
- Future land users access to soil there will be no access to soil as the proposed development will cover the entire footprint, with the exceptions of an indigenous garden at the entrance to the building:
 - HIL D for soil ingestion and inhalation;
 - CRC CARE for dermal contact; and
 - HSL D for indoor vapour inhalation risk for commercial site users Note the concrete floor will act as a barrier plus not risk identified.

It is anticipated that limited excavations will extent to 0.5m below ground surface to account for the removal of the existing carpark plus the service trenches, lift and stair footprints.

13.3 Soil Assessment

The following conclusions have been made from the soil investigation in the footprint of building 3:

• Shallow soil (0.5-0.6 m bgs) hydrocarbon contamination was confirmed in most boreholes and only exceeding ecological screening levels for TPH Fractions C¹⁶-C³⁴ in Borehole # 1 and to a greater depth in this hole. It is assumed that the worst of the contaminated material has already been removed. As a precaution this should be managed in the CMP.

- TPH Fractions C^{16} - C^{34} are indicative of diesel, oils or older degraded fuels.
- There was an absence of volatile hydrocarbons which rules out a risk to indoor vapour risk, a risk to trench workers and/ or a dermal contact risk to construction workers.
- There were some slightly elevated levels of metals detected. There were four shallow samples that has ecological investigation levels exceedances for copper zinc and arsenic.
- There were no health investigation level exceedances for land use D Commercial and Industrial. There was one health investigation level exceedances for land use C recreational use, this was for Arsenic at 0.5-0.6m bgs in BH03.
- Groundwater was not encountered even though boreholes were 2.2-2.4m above sea level with the North Esk River, approximately 200m to the east of the investigation area.
- For reference for future proposed excavation works material tested at the site was compared against *Information Bulletin 105* guidelines. Post leachate testing all the material was classified as Level 1 (clean fill) or Level 2 Material (low level contaminated soil).
- The following trends were observed in the soil results:
 - Shallow samples; 0.5-0.6m bgs had consistently higher levels of Arsenic, Copper and Zinc;
 - Deeper samples; 1.5-1.6m bgs has consistently higher levels of Beryllium and Chromium;
 - BH01 and BH07 had the highest levels of hydrocarbons and to a lesser extent but noticeably BH02.

14 RECOMMENDATIONS

GES considers that substantial data regarding the site contamination has been acquired during the invasive site assessment and recommends the following work should be undertaken to mitigate risk during and post construction at the site;

- A Contamination Management Plan (CMP) must be prepared and implemented at the beginning of the redevelopment phase of work; all construction workers and trench workers should be informed of the contamination at the site during their site induction.
- The CMP will include but not be limited to the following:
 - Soil management considerations including dust, wind, and water erosion in terms of human health and the environment;
 - Consideration to the duration of stockpile exposure and physical barriers to stockpiles plus standard building site security fencing
 - Classification and management advice in accordance with EPA IB105.
 - \circ If the site is to be excavated below the water table, consideration need to be given to removing the risk of a release of hydrocarbon/ heavy metal impact water into the stormwater system.
- Clean soil be imported to site for the proposed Indigenous Garden Bed as this is the area most likely for human receptors to have contact with the soil at the site.

This investigation only investigated the area of the proposed footprint of Building 3. If the design of the proposed development is altered, then there may be a requirement to assess the soil results against alternative guidelines or conduct further site investigations outside the current proposed footprint.

14.1 Statement of Suitability

The findings from the desktop investigation and results from the invasive soil investigation confirm that contamination at the site should not pose a risk to Human Health or the Environment (ecosystems) providing the above recommendations are followed. No further contamination remediation or management measures will be required during the site redevelopment works.

Yours faithfully,

Sarah Joyce BSc (Hons) Environmental Geologist

REFERENCES

AS/NZS 1726:1993. Geotechnical Site Investigations. Standards Australia, 1993.

AS 4482:2005 Guide to the sampling and investigation of potentially contaminated soil – Part 1: Non-volatile and semi-volatile compounds, Standards Australia, 2005.

CRC CARE 2013, Petroleum Vapour Intrusion assessment: Australian guidance, CRC CARE Technical Report no. 23, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

Dames & Moore; 1992a. Environmental Audit Inveresk Railway Workshops Redevelopment Project Launceston, Tasmania for Launceston City Council. Volume 1 – Site History. February 1992.

Dames & Moore; 1992b. Environmental Audit Inveresk Railway Workshops Redevelopment Project Launceston, Tasmania for Launceston City Council. Volume 2 – Site Assessment Work Plan History. February 1992.

Dames & Moore; 1992c. Environmental Audit Inveresk Railway Workshops Redevelopment Project Launceston, Tasmania for Launceston City Council. Volume 3 – Preliminary Contamination Assessment. July 1992.

Davis, GB, Merrick, NP & McLaughlan, RG 2006, Protocols and techniques for characterising sites with subsurface petroleum hydrocarbons – a review, Technical Report no. 2, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

Davis, GB, Patterson, BM & Trefry, MG 2009a, Biodegradation of petroleum hydrocarbon vapours, Technical Report no. 12, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

Davis, GB, Wright, J & Patterson, BM 2009, Field assessment of vapours, CRC CARE Technical Report no. 13, CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

DJ Douglas & Partners 1993. Factual Report on Contamination Assessment. Inveresk Railway Workshops, Launceston. On behalf of ICF. March 1993

Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Englewood Cliffs, NJ, Prentice-Hall, 604 p

Friebel, E & Nadebaum, 2011, 'Health screening levels for petroleum hydrocarbons in soil and groundwater. Part 1: Technical development document', CRC for Contamination Assessment and Remediation of the Environment, CRC CARE Technical Report no. 10, Adelaide.

GEOTON, 2014. Contamination Site Assessment (Tier 1 – Screening Level) UTAS Inveresk Residences, Invermay. August 2014. GEOTON Geotechnical Engineers.

GEOTON, 2014. Geotechnical Foundation Investigation UTAS Inveresk Residences, Invermay. July 2014. GEOTON Geotechnical Engineers.

ICF 1993. Volume 1 – Report and Appendices Health and Environmental Risk Assessment Inveresk Railyard Site Launceston. June 1993.

ICF 1993. Volume 2 – Figures and Tables Health and Environmental Risk Assessment Inveresk Railyard Site Launceston. June 1993.

ICF 1993. Summary Report Environmental Assessment Inveresk Railyard Site. August 1993.

LIST (2019). Land Information System Tasmania Online Database. Department of Primary Industries, Parks, Water and Environment. 2019. https://www.thelist.tas.gov.au/app/content/home

NEPC, 1999. Guideline on Data Collection, Sample Design and Reporting Schedule B (2), National Environmental Protection Measure (Assessment of Site Contamination), National Environment Protection Council, 1999. Measures as amended, taking into account amendments up to National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)

NEPM, 1999.Guideline on Investigation Levels for Soil and Groundwater, Schedule B (1), National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council, 1999. Measures as amended, taking into account amendments up to National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)

Pitt & Sherry, 2009. Launceston Flood Protection Scheme – Scottsdale and Kings Wharf Levees. Geotechnical Investigation, Summary of Fieldwork. August 2009

Queensland Government Natural Resources and Water 'Land Series' bulletin, Measuring Salinity. 2007. Managing Queensland's natural resources for today and tomorrow.

SEMF, 1999. Inveresk Railway Status of Site Remediation. November 1999.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1998. Inveresk Railway Workshops Development. Monthly Report No. 11 SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER, JANUARY, FEBRUARY & MARCH. May 1998.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1997. Inveresk Railway Workshops Development. Monthly Report No. 9 AUGUST, SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER 1996. May 1997.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1996. Inveresk Railway Workshops Development. Monthly Report No. 7 JANUARY, FEBRUARY, MARCH. August 1996.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1996. Inveresk Railway Workshops Development. Monthly Report No. 6 December 1995. January 1996.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Monthly Report No. 5 November 1995.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Monthly Report No. 4 October 1995. ADV7 Pipeline Excavation

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Monthly Report No. 3 September. ADV6 Pipeline Excavation

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Monthly Report No. 2 AUGUST 1995. September 1995.

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Monthly Report No. 1 JULY. September 1995. ADV4

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Groundwater Monitoring Program. August 1995. For Launceston City Council

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Management of Site Remediation. May 1995. For Launceston City Council

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1995. Inveresk Railway Workshops Development. Soil Stockpile Remediation Advice. February ADV1 For Launceston City Council

Stephenson EMF Consultants, Engineers and Managers [SEMF]; 1994. Inveresk Railway Workshops Site Redevelopment. Groundwater and Soil Remediation. Environmental Performance Review. September 1994.

LIMITATIONS STATEMENT

This ESA Report has been prepared in accordance with the scope of services between Geo-Environmental Solutions Pty. Ltd. (GES) and *John Wardle Architects* ('the Client') on behalf of their client. To the best of GES's knowledge, the information presented herein represents the Client's requirements at the time of printing of the Report. However, the passage of time, manifestation of latent conditions or impacts of future events may result in findings differing from that described in this Report. In preparing this Report, GES has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations referenced herein. Except as otherwise stated in this Report, GES has not verified the accuracy or completeness of such data, surveys, analyses, designs, plans and other information.

The scope of this study does not allow for the review of every possible soil and groundwater contaminant over the whole area of the site. Samples collected from the investigation area are assumed to be representative of the areas from where they were collected and indicative of the contamination status of the site at that point in time. The conclusions described within this report are based on these samples, the results of their analysis and an assessment of their contamination status.

This report does not purport to provide legal advice. Readers of the report should engage professional legal practitioners for this purpose as required.

No responsibility is accepted for use of any part of this report in any other context or for any other purpose by third party.

Appendix 1 GES Staff

GES is a specialist geotechnical and environmental consultancy providing advice on all aspects of soils, geology, hydrology, and soil and groundwater contamination across a diverse range of industries.

Geo Environmental Solutions Pty Ltd:

- ACN 115 004 834
- ABN 24 115 004 834

GES STAFF - ENGAGED IN SITE INVESTIGATION WORKS

Dr John Paul Cumming B.Agr.Sc (Hons) Phd CPSS GAICD

- Director
- PhD in Environmental Soil Chemistry from the University of Tasmania in 2007
- 18 years' experience in environmental contamination assessment and site remediation.

Ms Sarah Joyce BSc (Hons)

- Environmental Geologist
- Honours in Geography and Environmental Science at the University of Tasmania in 2003;
- Undergraduate Degree Double Major in Geology and Geography & Environmental Science
- 15 years professional work experience and 7 years contaminated site assessment

Mr Grant McDonald (Adv. cert. hort.)

- Soil Technician
- 10 years' experience in hydrocarbon and heavy metal contamination sampling of soils and groundwater.

GES STAFF - WITH CONTAMINATED SITES EXPERIENCE

Mr Kris Taylor Bsc (Hons)

- Senior Environmental & Engineering Geologist
- Honours in Environmental Geology at the University of Tasmania in 1998
- 20 years' experience in environmental contamination assessments and hydrogeology (including honours in mine site tailing pollution assessment). Including 15 years' experience in asbestos assessment.

Mr Aaron Plummer(Cert. IV)

- Soil Technician
- 5 years' experience in hydrocarbon and heavy metal contamination sampling of soils and groundwater.

Mr Mark Downie B.Agr.Sc (Hons)

- Soil Scientist
- 8 Year experience in contamination assessment and reporting of soils and groundwater.

Ms Peri Lucas B.Agr.Sc (Hons)

- Soil Scientist
- 2 Year experience in contamination assessment and reporting of soils and groundwater.

Appendix 2 Architects Plans

Appendix 3 EPA Documentation

Level 7, 134 Macquarie Street, Hobart TAS GPO Box 1550, Hobart, TAS 7001 Australia

 Enquiries:
 Contaminated Sites Unit

 Phone:
 (03) 6165 4599

 Email:
 contaminatedsites@epa.tas.gov.au

 Web:
 www.epa.tas.gov.au

 Our Ref:
 (EN-EM-AV-100706_39: M445836) sma

24 April 2019

Ms Sarah Joyce Geo-Environmental Solutions sjoyce@geosolutions.net.au

Dear Ms Joyce

PROPERTY INFORMATION REQUEST 2 Invermay Road, Invermay Certificate of Title: 174633/2

On 26 March 2019, the Contaminated Sites Unit received your Property Information Request relating to the land referred to above (the Site). A search of relevant databases and records has been undertaken.

The Site historically hosted the Launceston railyards and workshops, Pioneer Concrete works, and sporting grounds. It now hosts the Launceston Showgrounds, Queen Victoria Museum and the University of Tasmania (UTAS) Inversek Campus.

EPA Tasmania has numerous volumes of documents regarding the redevelopment and repurposing of the Site during the 1990s. These include, but are not limited to:

- Environmental Audit Inveresk Railway Workshops Redevelopment project Launceston Tasmania for Launceston City Council Volume 1: Site History, dated February 1992, prepared by Dames and Moore
- Queen Victoria Museum and Art Gallery Inveresk Railyard Redevelopment Contamination Assessment Report – Land, dated June 1999, prepared by SEMF
- Queen Victoria Museum and Art Gallery Inveresk Railyard Redevelopment Contamination Assessment Report – Buildings, dated June 1999, prepared by SEMF
- Launceston City Council August 1999 York Park Environmental Site assessment, prepared by SKM
- Department. of State Development Inveresk Railyard Redevelopment Project Site Management Plan, dated August 2000, prepared by SEMF

In March 2019, EPA Tasmania approved the transport of 4200m³ of low-level contaminated (Level 2) soil from UTAS Stadium to the Launceston Waste Centre.

No further records relating to contamination or potentially contaminating activities at the Site were found. The following records relating to neighbouring properties:

129-139 Invermay Road

- Historic WorkSafe Tasmania (WST) records indicate that dangerous goods were stored in underground storage tanks (USTs) at the property between 1949 and 1960. The record refers to WST file number N27.
- EPA Tasmania received notification in September 1999 of an incident at the Mobil Service Station having the potential to cause harm. Approval to remove the contaminated soil to the Launceston Waste Centre was given in 2000.

 Currently the property hosts a United Petroleum Service Station with four active UPSS with a total volume of 85,000L.

103 Invermay Road

- Six UPSS were registered at the Coles Express Service station in September 2010. EPA Tasmania received advice that three Underground Storage Tanks were removed and another decommissioned in situ at the property in November 2011 due to leaking.
- Remediation Notice 8655/1 (RN) was issued in July 2013 to require further works to address petroleum hydrocarbon contamination in groundwater and vapour risk concerns. The RN was revoked in November 2014.
- EPA Tasmania hold several documents regarding this property. The most recent is:

Environmental Site Assessment - Coles Express Invermay Service Station - 103 Invermay Road Invermay, dated 31 March 2014, prepared by ERM

3-11 Dry Street

- Three UPSS were registered at the Caltas Petrol Station in June 2010.
- A decommissioning form stated that two UPSS were removed in December 2015.

32-38 Invermay Road

• Four UPSS with a total volume of 89,000L are registered at the Caltas service station.

1-19 Lindsay Street (Scottsdale Levee)

- Site Management Notice 8655/1, relating to the burial of approximately 300 m³ of hydrocarbon contaminated Soil, is registered on the property.
- EPA Tasmania holds the following report regarding the contaminated soil:

Summary Report - Burial of PAH Contaminated Soil Scottsdale Levee, dated October 2011, prepared by Pitt and Sherry

No other records relating to contamination or potentially contaminating activities at adjacent properties were found.

The search of records is restricted to those held by EPA Tasmania and includes records relating to: The *Environmental Management and Pollution Control (Underground Petroleum Storage Systems) Regulations 2010;* Industrial Sites (which are or have been regulated by EPA Tasmania); historical landfills; and contamination issues reported to the Contaminated Sites Unit. In addition, the Incidents and Complaints database and records relating to the historical storage of dangerous goods (as detailed below) are searched.

WorkSafe Tasmania (1300 366 322 or <u>wstinfo@justice.tas.gov.au</u>) may have issued dangerous goods licences and/or may hold relevant records for the Site and adjoining properties. As the storage of dangerous goods/fuels is an environmentally relevant activity, you may wish to contact them for further information.

Please note that the dangerous goods licensing records referred to by EPA Tasmania are for sites with underground storage tanks that ceased holding Dangerous Goods Licences prior to 1993. WorkSafe Tasmania hold the records for these Licences after 1993.

EPA Tasmania does not hold records on all sites that are or may be contaminated. You should consider obtaining a site history to determine the likelihood of contamination. If contamination on the Site or an adjacent property is considered likely, further assessment by a competent environmental assessment practitioner is recommended. Site assessments should be conducted in accordance with the National Environment Protection (Assessment of Site Contamination) Measure 1999, National Environment Protection Council (or as varied). http://epa.tas.gov.au/regulation/contaminated-sites/identification-and-assessment-of-contaminatedland/contaminated-site-assessment

Please note since 1 July 2015, the Director has required all environmental site assessments and reports submitted to the Contaminated Sites Unit for consideration to be prepared by a person certified as a specialist contaminated sites consultant under a scheme approved by the Director. Effective 30 June 2018, the endorsed scheme is operated by Certified Environmental Practitioners (CEnvP): Consultants certified under this scheme are approved to use the seal **CEnvP Site Contamination**. <u>https://www.cenvp.org</u>. Further details are available at: https://epa.tas.gov.au/regulation/contaminated-site-assessment-consultant.

As local councils are able to issue Environment Protection Notices, Environmental Infringement Notices and record complaints, you may wish to contact them for additional information that may be relevant to the site. Further, if the Site has historically been subject to a permit under the *Land Use Planning and Approvals Act 1993*, the Council would have issued the permit.

Under the *Right to Information Act 2009* (RTI Act), you are entitled to apply for any records mentioned within this letter such as reports, letters, or other relevant documents. For further information on how the RTI process works and how to request information under the RTI Act please visit the Department of Primary Industries, Parks, Water and Environment website.

If you are purchasing a property, you should consider Part 5A of the *Environmental Management* and *Pollution Control Act 1994* (EMPCA) which defines and specifies requirements for managing contaminated sites. If there is reason to believe the site is, or is likely to be, contaminated there are certain requirements that you must meet (e.g. notification of a likely contaminated site to the Director, EPA as outlined in section 74B of the EMPCA).

Although all due care has been taken in the preparation of this letter, the Crown gives no warranty, express or implied, as to the accuracy or completeness of the information provided. The Crown and its servants or agents accept no responsibility for any loss or damage arising from reliance upon this letter, and any person relying on the letter does so at their own risk absolutely.

If you have any queries in relation to the matters above, please contact the Contaminated Sites Unit using the details at the head of this correspondence or refer to the EPA website at <u>www.epa.tas.gov.au</u> and click on 'Regulation' to locate information on Underground Fuel Tanks and Contaminated Sites.

As you are aware, property searches incur a charge of \$237.00. An invoice will be emailed as instructed. If you require this letter and invoice posted, please advise the Contaminated Sites Unit.

Yours sincerely

D. Hergen

Bruce Napier ENVIRONMENTAL OFFICER - CONTAMINATED SITES

Invoice: Miran Shoemark

Email: Miran@geosolutions.net.au

Appendix 4 Historical Aerial Photographs

9 Jan 2016

15 Feb 2013

12 January 2008 (Google Earth)

2006 Launceston Historical Aerial

2006 Historical Aerial Photograph - close up of Building 3

1995 Historical Aerial Photograph - Former rail yards site

1995 Historical Aerial Photograph - Close up

1984 Historical Aerial Photograph - Former rail yards site

1984 Historical Aerial Photograph - Close up

1978 Historical Aerial Photograph - Former rail yards site

1978 Historical Aerial Photograph - Close up

1956 Historical Aerial Photograph - Former rail yards site

Appendix 5 Site Photographs

Environmental Site Assessment – V2: Building 3; 2 Invermay Road, Invermay, June 2019

Environmental Site Assessment – V2: Building 3; 2 Invermay Road, Invermay, June 2019

Environmental Site Assessment – V2: Building 3; 2 Invermay Road, Invermay, June 2019

Appendix 6 PID Calibration Record

Collinguitor Tool	Codificato		10	nbros	Imbros Pty Ltd Aaki 19 009 525 053 1059 Cambridge Road, Cambridge Taimania Australia 7170	Phone (02) 4214 1500 Fox (03) 6214 1555 Infoillimbioi.com.ou
29/01/2019 16:05:00	PM					
Device Senia Number Manufacturen Test Result Sensors Type: Result Final Reading: Next Calibration Due: Set Points Type: High Alarm Low Alarm TWA Alarm: STEI diesen	590-902123 RAE Systems Pass 150 Pass 5 28/07/2019 150 150 5.0	0% 0%	Device Type Next Cal Du	R	MiniRAE Life 28/07/2019	
Options					1944	
Datalog Interval:	15 seconds		CO STEL	whed:	NIA	
H2S STEL Period	15 minutes		Period		15 minutes	
Test Station					Imbros Cal	
Dock Serial Number	Z309-002181		Dock Locate	м	Lab	
Used: Concentration: Type: Notes	iniet 1: Yes 20.9% Purge NOTE: Calibr	Inimi 2 Yes 100ppm #SO 100p ation all Ok	inlet 3: No pm by volume	iniet 4: No	iniet 5: No	

Technology for Laboratory and Marine Science

Imbros Pty Ltd 1059 Cambridge Road Cambridge TAS 7170 Australia

info@imbros.com.au www.imbros.com.au ABN 29 009 525 053 Ph: (03) 6216 1500 Fax: (03) 6216 1555

SERVICE / REPAIR REPORT

Customer:

Cash Sales Aaron Plummer 0400 821 977 aplummer@geosolutions.net.au

Job No:	3825
Cust ABN:	
Date:	30/01/2019
Service Engineer:	Blackwell, Damian

Reported Fault / Required Service:

RAE SYSTEMS PGM7300 MiniRAE Lite Serial Number: 590-902123

Service and calibration

Work Performed / Recommendation (if any):

Incoming evaluation - no faults found.

Calibration carried out successfully. Functionality test - passed.

See calibration sheet for full details.

Page 1 of 1

Technology for Laboratory and Marine Science

Appendix 7 Laboratory Chain of Custody

	CHAIN OF CUSTODY CUSTODY MERTEAN ALS LADORDOF		A constraint of the second sec	ed) for other participation of the control of the c		RNE 2.4 Weeks 8 900 E. semp	evel Manuary (3.17.4.42 events of the events and Sampaula WIC 3171 lies.methodrama@abajobal.com and 1.5.methodrama@abajobal.com and 1.5.methodrama@abajobal.com	Jigg SCROM 1.5 Secondaries and constructions of the secondary construction of the secondary discrete secondary and secondary secondary discrete secondary and secondary discrete secondary secondary and discrete secondary secondary discrete seco	PR:0287	Y 277-289 Voogdark food Smithfield NSW (8-8056 E. samples: sydney@argional.com ELECT - 13-15. Provide Samples: - 4-9, 1, 4-19 ELECT - 13-15. Provide Samples: - 4-9, 4-9, 4-9, 4-9, 4-9, 4-9, 4-9, 4-
ENT: ICE:	GEOENVIRONMENTAL SO	DLUTIONS M TAS 7004	TURNA (Standard	ROUND REQUIREMENTS : TAT may be longer for some tests e.g.	Standard	1 TAT (List d	ue date): o: TaT (List due date):			
LIEDT.			VItra Tra	e Organics)		Rea D D D D D D D D D D D D D D D D D D D		COC SEDIJENCE NIMBER (Circle)		
DER NUMBER	Enilary :	'n	ALOK	DUE NO.	111 July 1		COC: S	1 2 3 4 5 6 7		
LIFCT MANAG	ier AT	CONTAC	HH:				OF	1223 4 5 6 7		
IPI ER-		SAMPLEI	MOBILE		RELINQUISH	ED.BO	RECEN	VED BY: CAM (ALC RELINQUISHED	BY:	RECEIVED BY:
Vamoilad to A		EDD FOR	MAT for dat	auth-		1		Construction of the second		117
il Panorte to	icumming@neosolitions net au- s	sinve@densolutions	net au	and.	DATEME		DATEN			DATE/TIME:
il Invoice to	cumming@geosciutions.net.au. miran	h@geosolutions.net.au,	sjoyce@geo	solutions.net.au	3.6.1	6		4.35		
AMENTS/SPE	CIAL HANDLING/STORAGE OR DIS	SPOSAL:								
							ANALYSIS REQUIREL Where Metals are required	D including SUITES (NB: Suite Codes must be listed to att ed, specify Total (unfiltered buttle required) or Dissolved (f required).	act suite price) ield filtered bottle	Additional Information
0 9	SAMPLE ID	Date / Time	XIATAM	TYPE & PRESERVATIVE codes below)	(refer to	TOTAL CONTAINERS	2F, HAY, PTEX, PAH, 15 Metals			Comments on ikely containinant levels distributs, or samples requiring specific analysis etc.
3 BH	9.0-5.0 40	31-5-19	n	20-		-	7			
4 BH	07 1.4-1.S	-	~				2			
S BH	08 0.5-0.6					H	2			
2	5.1- H.1 801					-	7			
DW	Plicete		-1	-1		-	7			
8 8	nsote	4	3	au ip 1A		4	2			
							-			
		89								
					TOTAL					

Rebatch cs contact: Kana Additional Information:

> Client / Client code: GEOENVSOL Project: Building 3 Project Manager: Sarah Joyce Date /time sample rec: 4/6/19 @ 9:35am Date/time Instructions rec: 13/6/19 @ 10:45am Due date: ASAP Due date surcharge: ASAP

Appendix 5 Laboratory Chain of Custody

Proactive Holding Time Report

Appendix 8 Laboratory Sample Receipt Notification

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	EM1908628		
Client Contact Address	GEO-ENVIRONMENTAL SOLUTIONS SARAH JOYCE 29 KIRKSWAY PLACE BATTERY POINT TASMANIA, AUSTRALIA 7004	Laboratory Contact Address	: Environmental Division Melbourne : Shirley LeCornu : 4 Westall Rd Springvale VIC Australia 3171
E-mail Telephone Facsimile Project Order number C-O-C number Site Sampler	sjoyce@geosolutions.net.au +61 03 6223 1839 +61 03 6223 4539 Building 3 JOHN PAUL CUMMING	E-mail Telephone Facsimile Page Quote number QC Level	shirley.lecornu@Alsglobal.com +6138549 9630 +61-3-8549 9626 1 of 3 EB2017GEOENVSOL0001 (EN/222) NEPM 2013 B3 & ALS QC Standard
Dates Date Samples Recei Client Requested Du Date	ived : 04-Jun-2019 09:35 ie : 11-Jun-2019	Issue Date Scheduled Reporting	: 05-Jun-2019 Date : 11-Jun-2019
Delivery Deta Mode of Delivery No. of coolers/boxes Receipt Detail	ils : Carrier : 2	Security Seal Temperature No. of samples rece	: Intact. : 3.9 ived / analysed : 18 / 18

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date	: 05-Jun-2019
Page	: 2 of 3
Work Order	· EM1908628 Amendment 0
Client	: GEO-ENVIRONMENTAL SOLUTIONS

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

Incl. Digestion)

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

laboratory and component Matrix: SOIL Laboratory sample	displayed in bra	ckets without a time	L - EA001 (CaCl)	L - EA055-103 sture Content	L - S-03 Metals (NEPM 2013 Si	L - S-07 HBTEXN/PAH (SIM)
ID	date / time		S H	SO Mo	SO 15	SO
EM1908628-001	31-May-2019 00:00	BH01 0.5-0.6	1	1	1	1
EM1908628-002	31-May-2019 00:00	BH01 1.4-1.5		1	1	1
EM1908628-003	31-May-2019 00:00	BH02 0.5-0.6		1	1	1
EM1908628-004	31-May-2019 00:00	BH02 1.4-1.5	1	1	1	1
EM1908628-005	31-May-2019 00:00	BH03 0.5-0.6		1	1	1
EM1908628-006	31-May-2019 00:00	BH03 1.4-1.5	1	1	1	1
EM1908628-007	31-May-2019 00:00	BH04 0.5-0.6		1	1	1
EM1908628-008	31-May-2019 00:00	BH04 1.4-1.5		1	1	1
EM1908628-009	31-May-2019 00:00	BH05 0.5-0.6		1	1	1
EM1908628-010	31-May-2019 00:00	BH05 1.4-1.5		1	1	1
EM1908628-011	31-May-2019 00:00	BH06 0.5-0.6	1	1	1	1
EM1908628-012	31-May-2019 00:00	BH06 1.4-1.5	1	1	1	1
EM1908628-013	31-May-2019 00:00	BH07 0.5-0.6		1	1	1
EM1908628-014	31-May-2019 00:00	BH07 1.4-1.5		1	1	1
EM1908628-015	31-May-2019 00:00	BH08 0.5-0.6		1	1	1
EM1908628-016	31-May-2019 00:00	BH08 1.4-1.5		1	1	1
EM1908628-017	31-May-2019 00:00	Duplicate	1	1	1	1

Matrix: WATER			-W-03 s (NEPM Suite)	-W-07 XN/PAH
Laboratory sample ID	Client sampling date / time	Client sample ID	WATER 15 Metal	WATER TRH/BTE
EM1908628-018	31-May-2019 00:00	Rinsate	1	1

Proactive Holding Time Report

Issue Date	: 05-Jun-2019
Page	: 3 of 3
Work Order	EM1908628 Amendment 0
Client	: GEO-ENVIRONMENTAL SOLUTIONS

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables		
All Invoices		
- A4 - AU Tax Invoice (INV)	Email	smcintosh@geosolutions.net.au
JOHN PAUL CUMMING		
 *AU Certificate of Analysis - NATA (COA) 	Email	jcumming@geosolutions.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	jcumming@geosolutions.net.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jcumming@geosolutions.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jcumming@geosolutions.net.au
- A4 - AU Tax Invoice (INV)	Email	jcumming@geosolutions.net.au
- Chain of Custody (CoC) (COC)	Email	jcumming@geosolutions.net.au
 EDI Format - ENMRG (ENMRG) 	Email	jcumming@geosolutions.net.au
- EDI Format - XTab (XTAB)	Email	jcumming@geosolutions.net.au
SARAH JOYCE		
 *AU Certificate of Analysis - NATA (COA) 	Email	sjoyce@geosolutions.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sjoyce@geosolutions.net.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	sjoyce@geosolutions.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sjoyce@geosolutions.net.au
- A4 - AU Tax Invoice (INV)	Email	sjoyce@geosolutions.net.au
- Chain of Custody (CoC) (COC)	Email	sjoyce@geosolutions.net.au
- EDI Format - ENMRG (ENMRG)	Email	sjoyce@geosolutions.net.au
- EDI Format - XTab (XTAB)	Email	sjoyce@geosolutions.net.au

	SAMPLE RECEIPT	NOTIFICATI	ON (SP	(N)
Work Order :	ES1917553			
Client : Contact : Address :	GEO-ENVIRONMENTAL SOLUTIONS DR JOHN PAUL CUMMING 29 KIRKSWAY PLACE BATTERY POINT TASMANIA, AUSTRALIA 7004	Laboratory Contact Address	: Environme : Shirley Lee : 277-289 W NSW Aust	ental Division Sydney Cornu Voodpark Road Smithfield Iralia 2164
E-mail Telephone : Facsimile :	jcumming@geosolutions.net.au +61 03 6223 1839 +61 03 6223 4539	E-mail Telephone Facsimile	shirley.leco +6138549 +61-2-878	ornu@Alsglobal.com 9630 4 8500
Project : Order number : C-O-C number : Site :	Building 3	Page Quote number QC Level	1 of 2 EB2017GI NEPM 201	EOENVSOL0001 (EN/222) 13 B3 & ALS QC Standard
Sampler :	JPC			
Dates Date Samples Received Client Requested Due Date	: 06-Jun-2019 13:00 : 14-Jun-2019	Issue Date Scheduled Reporting [Date	: 07-Jun-2019 : 14-Jun-2019
Delivery Details Mode of Delivery	: Undefined	Security Seal		: Intact.
No. of coolers/boxes Receipt Detail	1	Temperature No. of samples receive	ed / analysed	: 8.1'c - Ice present : 1 / 1

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date	: 07-Jun-2019
Page	: 2 of 2
Work Order	· ES1917553 Amendment 0
Client	: GEO-ENVIRONMENTAL SOLUTIONS

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

Matrix: SOIL

as the determin tasks, that are incl lf no sampling default 00:00 on is provided, the laboratory and	ation of moisture uded in the package. time is provided, the date of samplin sampling date wi displayed in bra	content and preparation the sampling time will ig. If no sampling date ill be assumed by the ickets without a time		13 Suite - incl. Digestion	(M)
component Matrix: SOIL Laboratory sample	Client sampling	Client sample ID	OIL - EA055-103 oisture Content	DiL - S-03 5 Metals (NEPM 20	OIL - S-07 RH/BTEXN/PAH (S
ES1917553-001	31-May-2019 00:00	INTER LAB SPLIT	02	v 41 0 41	S F

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

All Invoices		
- A4 - AU Tax Invoice (INV)	Email	smcintosh@geosolutions.net.au
JOHN PAUL CUMMING		
 *AU Certificate of Analysis - NATA (COA) 	Email	jcumming@geosolutions.net.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	jcumming@geosolutions.net.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	jcumming@geosolutions.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	jcumming@geosolutions.net.au
- A4 - AU Tax Invoice (INV)	Email	jcumming@geosolutions.net.au
 Attachment - Report (SUBCO) 	Email	jcumming@geosolutions.net.au
- Chain of Custody (CoC) (COC)	Email	jcumming@geosolutions.net.au
- EDI Format - ENMRG (ENMRG)	Email	jcumming@geosolutions.net.au
- EDI Format - XTab (XTAB)	Email	jcumming@geosolutions.net.au
MIRAN		
- A4 - AU Tax Invoice (INV)	Email	miran@geosolutions.net.au
SARAH JOYCE		
 *AU Certificate of Analysis - NATA (COA) 	Email	sjoyce@geosolutions.net.au
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	sjoyce@geosolutions.net.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	sjoyce@geosolutions.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sjoyce@geosolutions.net.au
- A4 - AU Tax Invoice (INV)	Email	sjoyce@geosolutions.net.au
- Attachment - Report (SUBCO)	Email	sjoyce@geosolutions.net.au
- Chain of Custody (CoC) (COC)	Email	sjoyce@geosolutions.net.au
- EDI Format - ENMRG (ENMRG)	Email	sjoyce@geosolutions.net.au
- EDI Format - XTab (XTAB)	Email	sjoyce@geosolutions.net.au

1	SAMPLE RECEIPT	NOTIFICATIO	N (SRN)
Work Order	EM1909096		
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory : E	Environmental Division Melbourne
Contact	SARAH JOYCE	Contact : S	Shirley LeCornu
Address	29 KIRKSWAY PLACE	Address : 4	Westall Rd Springvale VIC Australia
	BATTERY POINT TASMANIA,	3	3171
	AUSTRALIA 7004		
E-mail	sjoyce@geosolutions.net.au	E-mail ; s	hirley.lecornu@Alsglobal.com
Telephone	+61 03 6223 1839	Telephone +	6138549 9630
Facsimile	: +61 03 6223 4539	Facsimile +	61-3-8549 9626
Project	: Building 3	Page : 1	l of 2
Order number	1	Quote number ; E	EB2017GEOENVSOL0001 (EN/222)
C-O-C number	:	QC Level : N	NEPM 2013 B3 & ALS QC Standard
Site	1		
Sampler			
Dates			
Date Samples Receiv	ed 04-Jun-2019 09:35	Issue Date	: 13-Jun-2019
Client Requested Due	: 17-Jun-2019	Scheduled Reporting Date	20-Jun-2019
Date			20 000 2010
Delivery Detai	ls		
Mode of Delivery	: Samples On Hand	Security Seal	: Not Available
No. of coolers/boxes	,	Temperature	:
Receipt Detail		No. of samples received /	analysed ; 3 / 3

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- The scheduled reporting date has been extended due to laboratory capacity.
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of
 recommended holding times that have occurred prior to samples/instructions being received at
 the laboratory. The absence of this summary table indicates that all samples have been received
 within the recommended holding times for the analysis requested.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date	: 13-Jun-2019
Page	: 2 of 2
Work Order	EM1909096 Amendment 0
Client	: GEO-ENVIRONMENTAL SOLUTIONS

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

default 00:00 on is provided, the laboratory and component Matrix: SOIL	the date of samplir sampling date w displayed in bra	ig. If no sampling date ill be assumed by the ickets without a time	EA055-103 a Content	EG005C ofe Metats by ICPAES	K026SF (Solids) anide By Segmented F	eN33a sachate	P066 (solids) srinated Biphenyls by G
Laboratory sample ID	Client sampling date / time	Client sample ID	SOIL - E Moisture	SOIL - E Leachat	SOIL - E Total Cy	SOIL - E	SOIL - E Polychic
EM1909096-001	31-May-2019 00:00	BH01 1.4-1.5	1		1		1
EM1909096-002	31-May-2019 00:00	BH07 0.5-0.6	1	1	1	1	1
EM1909096-003	31-May-2019 00:00	BH03 0.5-0.6		1		1	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

All Invoices		
- A4 - AU Tax Invoice (INV)	Email	smcintosh@geosolutions.net.au
KRIS TAYLOR		
 *AU Certificate of Analysis - NATA (COA) 	Email	ktaylor@geosolutions.net.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	ktaylor@geosolutions.net.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	ktaylor@geosolutions.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	ktaylor@geosolutions.net.au
- A4 - AU Tax Invoice (INV)	Email	ktaylor@geosolutions.net.au
 Attachment - Report (SUBCO) 	Email	ktaylor@geosolutions.net.au
- Chain of Custody (CoC) (COC)	Email	ktaylor@geosolutions.net.au
- EDI Format - ENMRG (ENMRG)	Email	ktaylor@geosolutions.net.au
- EDI Format - XTab (XTAB)	Email	ktaylor@geosolutions.net.au
SARAH JOYCE		
 *AU Certificate of Analysis - NATA (COA) 	Email	sjoyce@geosolutions.net.au
- *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)	Email	sjoyce@geosolutions.net.au
- *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)	Email	sjoyce@geosolutions.net.au
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	sjoyce@geosolutions.net.au
- A4 - AU Tax Invoice (INV)	Email	sjoyce@geosolutions.net.au
- Attachment - Report (SUBCO)	Email	sjoyce@geosolutions.net.au
- Chain of Custody (CoC) (COC)	Email	sjoyce@geosolutions.net.au
- EDI Format - ENMRG (ENMRG)	Email	sjoyce@geosolutions.net.au
- EDI Format - XTab (XTAB)	Email	sjoyce@geosolutions.net.au

Segmented Flow Analyser

(solids) d Biphenyls by GCMS

Appendix 9 Borehole Logs

Note the logs have anticipated excavations to 0.5m below ground surface to account for the removal of the existing carpark plus the service trenches, lift and stair footprints.

Appendix 10 Quality Assurance and Quality Control Documentation

Duplicate Comparrison	Sample	Arsenic	Barium	Beryllium	Cadmium	Chromium Total	Copper	Lead	Manganese	Nickel	Vanadium	Zinc	Mercury	N a phtha len e	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a) anthracene	Chrysene	Benzo(b)fluoranthene	Benzo(k) fluoranthene	Benzo(a)pyrene	Indeno(1.2.3.cd)pyrene	Ulbenz(a.n)anthracene	Benzo(g.h.i)perylene	sum or polycyclic aromatic hydr	Benzo(a)pyrene TEQ (WHO) Benzene	Toluene	Ethylbenzene	meta- & para-Xylene	ortho-Xylene Sum of BTEX	Total Xylenes	Naphthalene	C6 - C9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction	C29 - C36 Fraction	C10 - C36 Fraction (sum)	C6 - C10 Fraction	F1	>C10 - C16 Fraction	>C16 - C34 Fraction	>C34 - C40 Fraction	>c.tu - C40 Fraction (sum)	F2	Benzo(a)pyrene ובע (חמוו נטא) Benzo(a)pyrene TEQ (LOR)
Unit		mg/kg	mg/kg	mg/kg i	ng/kg m	ng/kg mg	/kg mg/	'kg mg/k	kg mg∕kį	g mg/k	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg i	ng/kg n	ng/kg m	ng/kg n	ng/kg n	ng/kg m	ng/kg m	g/kg m	ig/kg m	g/kg mg	g/kg mg	/kg mg	g/kg mg	/kg mg	g/kg mg/l	kg mg/kg	mg/kg i	ng/kg m	ng/kg mg	/kg mg/l	kg mg/kg	g mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg m	ig/kg m	mg/kg r	mg/kg mg	g/kg mg	/kg m	ng/kg mg	;/kg mg/kg
LOR		5	10	1	1	2 2	2 5	5	5	2	5	5	0.1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5 0	0.5 0).5 0	0.5 0	.5 0	0.5 0	.5 0	.5 0.2	0.5	0.5	0.5	0.5 0.	2 0.5	1	10	50	100	100	50	10	10	50	100 1	00 5	0	50 0	.5 0.5
31/05/2019	Duplicate	29	100	<1	<1	16 7	7 25	9 238	227	27	21	158	0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	0.5 <	<0.5 <	0.5 <	0.5 <0).5 <	0.5 <0).5 <0	0.5 <0.2	2 <0.5	<0.5	<0.5	<0.5 <0	.2 <0.5	5 <1	<10	<50	380	380	760	<10	<10	<50	620 1	90 8:	10 <	<50 0	.6 1.2
31/05/2019	BH05 0.5-0.6	31	50	<1	<1	10 5	5 15	9 229	147	16	17	206	0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <	<0.5 <	0.5 <	0.5 <0).5 <	0.5 <0).5 <0	0.5 <0.2	2 <0.5	<0.5	<0.5	<0.5 <0	.2 <0.5	5 <1	<10	<50	<100	<100	<50	<10	<10	<50	130 <1	.00 13	30 <	<50 0	.6 1.2
Relative Percentage Difference (RPD) %	6.7	66.7	NA	NA 4	46.2 33	3.3 47.	.8 3.9	42.8	3 51.2	21.1	26.4	0.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA I	NA N	IA I	NA N	IA N	IA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	NA	NA	NA	NA	NA	NA :	130.7	NA 14	4.7	NA 0	.0 0.0
RPD Compliance Limit %		50	50	NA	NA	50 5	0 30) 30	30	50	50	30	50	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA N	NA N	IA I	NA N	IA N	A NA	NA	NA	NA	NA N	A NA	NA	NA	NA	50	50	50	NA	NA	NA	50 1	A 5	0	NA M	JA 50
Method Detection Limit (MDL)		100	200	NA	NA	40 4	0 50	0 500	500	40	100	500	2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA N	NA N	IA I	NA N	IA N	A NA	NA	NA	NA	NA N	A NA	NA	NA	NA	2000	2000	1000	NA	NA	NA	2000	A 10	000	NA M	JA 10
MDL Class		LOW	LOW	NONE	NONE L	OW LO	W ME	D MED	D MED	LOW	LOW	MED	LOW	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE N	ONE N	ONE NO	ONE NO	ONE NO	ONE NO	ONE NO	DNE NO	DNE NON	NONE	NONE	NONEN	IONE NO	NE NON	IE NONE	NONE	NONE	LOW	LOW	LOW	NONE N	IONE N	NONE	LOW NO	ONE LC	W N	ONE NO	ONE LOW
RPD Compliance With MDL?	47/56 (84%)	YES	NO	YES	YES	YES YI	ES NO) YES	NO	NO	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES Y	YES Y	'ES Y	YES Y	ES Y	YES Y	ES Y	ES YES	5 YES	YES	YES	YES YE	S YES	S YES	YES	YES	NO	NO	NO	YES '	YES	YES	NO Y	ES N	۱۵ ۱	YES Y	ES YES
31/05/2019	INTER LAB SPLIT	20	70	<1	<1	18 6	5 17	9 191	213	25	28	112	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <	<0.5 <	0.5 <	0.5 <0).5 <	0.5 <0).5 <0).5 <0.2	2 <0.5	<0.5	<0.5 <	<0.5 <0	.2 <0.5	5 <1	<10	<50	220	220	440	<10	<10	<50	360 1	20 48	80 <	<50 0	.6 1.2
31/05/2019	BH06 0.5-0.6	24	80	<1	<1	19 5	5 16	6 211	205	21	46	125	<0.1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5 <	:0.5 <	<0.5 <	0.5 <	0.5 <0).5 <	0.5 <0).5 <0	0.5 <0.2	2 <0.5	<0.5	<0.5 <	<0.5 <0	.2 <0.5	5 <1	<10	<50	290	290	580	<10	<10	<50	480 1	40 62	20 <	<50 0	.6 1.2
Relative Percentage Difference (RPD)%	18.2	13.3	NA	NA	5.4 18	3.2 7.5	5 10.0) 3.8	17.4	48.6	11.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA N	NA N	IA I	NA N	IA N	IA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	27.5	27.5	27.5	NA	NA	NA	28.6 1	5.4 25	5.5	NA 0	.0 0.0
RPD Compliance Limit %		50	50	NA	NA	50 5	0 30) 30	30	50	50	30	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA N	NA N	IA I	NA N	IA N	IA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	50	50	50	NA	NA	NA	50 1	IA 5	0	NA M	√A 50
Method Detection Limit (MDL)		100	200	NA	NA	40 4	0 50	0 500	500	40	100	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA I	NA I	NA I	NA N	IA I	NA N	IA N	IA NA	NA	NA	NA	NA N	A NA	NA	NA	NA	2000	2000	1000	NA	NA	NA	2000	A 10	000	NA M	JA 10
MDL Class		LOW	LOW	NONE	NONE	OW LO	W ME	D MED	D MED	LOW	LOW	MED	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE	NONE N	ONE N	ONE NO	ONE NO	ONE NO	DNE NO	ONE NO	DNE NO	DNE NON	IE NONE	NONE	NONE	IONE NO	NE NON	IE NONE	NONE	NONE	LOW	LOW	LOW	NONE N	IONE N	NONE	LOW NO	DNE LC	W N	ONE NO	ONE LOW
RPD Compliance With MDL?	56/56 (100%)	YES	YES	YES	YES	YES YI	ES YE	S YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES	YES Y	YES Y	'ES Y	YES Y	ES Y	ES Y	ES Y	ES YES	5 YES	YES	YES	YES YE	S YES	S YES	YES	YES	YES	YES	YES	YES 1	YES	YES	YES Y	ES Y	ES \	YES Y	ES YES

Rinsate Blank

						EG0	20F: Diss	solved N	/letals by	ICP-MS							EP08	30		EP	P080/0	71		EPO8	80/071																									
Quality C	ontrol Blanks	Arsenic	Beryllium	Barium	Cadmium	Chromium	Cobalt	Copper	Lead	Manganese	Nickel	Selenium	Vanadium	Zinc	Boron	Mercury	Benzene	Toluene Ethvihenzene	meta- & para-Xylene	or tho-Xylene	Total Xylenes Sum of BTEX	Naphthalene	C6 - C9 Fraction	C10 - C14 Fraction	C15 - C28 Fraction C29 - C36 Fraction	C10 - C36 Fraction (sum)	C6 - C10 Fraction	C6 - C10 Fraction minus BTEX (F1)	>C10 - C16 Fraction	>LIb - L34 Fraction >C34 - C40 Fraction	>C10 - C40 Fraction (sum)	>C10 - C16 Fraction minus Naphthalene (F2)	Naphthalene	Acenaphthylene	Acenaphthene	Fluorene	Phenanthrene	Anthracene	Fluoranthene	Pyrene	Benz(a) anthracene	Chrysene	Benzo(b+j)fluoranthene	Ben zo(k) fluor anthene	Ben zo(a)pyr ene	Indeno(1.2.3.cd)pyrene	Dibenz(a.h)anthracene	Benzo(g.h.i)perylene	Sum of polycyclic aromatic hydrocarbons	Benzo(a)pyrene TEQ (zero)
Unit		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	μg/Lμ	.g/Lµg	/Lµg/L	µg/Lµ	ıg/Lµg/	Lµg/L	µg/L	μg/L μ	.g/L μg	′L μg/L	µg/L	µg/L µ	ιg/L μį	g/L μg/	L μg/L	μg/L	μg/L	µg/L	μg/L μ	ιg/L μ	ug/L	μg/L μ	ug/L	µg/L	µg/L	µg/L µ	µg/L	µg/L	µg/L	µg/L µ	ug/L µ	μg/L μ	lg/L μ	⊥g/L
LOR		0.001	0.001	0.001	0.0001	0.001	0.001	0.001	0.001	0.001	0.001	0.01	0.01	0.005	0.05	0.0001	1	2 2	2	2	2 1	5	20	50 1	.00 50	50	20	20	100 1	00 10	100	100	1	1	1	1	1	1	1	1	1	1	1	1	0.5	1	1	1 (ງ.5 (0.5
Date	Sample																																																	
31/05/2019	Rinsate	< 0.001	< 0.001	< 0.001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	<0.01	<0.01	<0.005	<0.05	<0.0001	1<1 <	2 <2	<2	<2 <	<2 <1	<5	<20	<50 <	100 < 50) <50	<20	<20 <	100 <1	00 <10	0 <100	<100	<1.0	<1.0	<1.0 <	1.0 <	1.0	<1.0 <	1.0 <	<1.0 <	<1.0 <	<1.0 <	1.0 <	<1.0 <	<0.5 <	<1.0 <	1.0 <	1.0 <(J.5 <(0.5

	QUALITY CONTROL REPORT								
Work Order	EM1908628	Page	≈ 1 of 11						
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	Environmental Division Melbourne						
Contact	SARAH JOYCE	Contact	: Shirley LeCornu						
Address	29 KIRKSWAY PLACE	Address	: 4 Westall Rd Springvale VIC Australia 3171						
	BATTERY POINT TASMANIA, AUSTRALIA 7004								
Telephone	+61 03 6223 1839	Telephone	: +6138549 9630						
Project	Building 3	Date Samples Received	: 04-Jun-2019						
Order number		Date Analysis Commenced	: 05-Jun-2019						
C-O-C number		Issue Date	: 12-Jun-2019						
Sampler	JOHN PAUL CUMMING		Hac-MRA NATA						
Site									
Quote number	EN/222		Appresident No. 271						
No. of samples received	: 18		Accredited for compliance with						
No. of samples analysed	: 18		ISO/IEC 17025 - Testing						

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

 Page
 : 2 of 11

 Work Order
 : EM1908628

 Client
 : GEO-ENVIRONMENTAL SOLUTIONS

 Project
 : Building 3

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2390833)							
EM1908628-001	BH01 0.5-0.6	EG005T: Chromium	7440-47-3	2	mg/kg	65	56	14.5	0% - 20%
EM1908628-010	BH05 1.4-1.5	EG005T: Chromium	7440-47-3	2	mg/kg	76	72	4.56	0% - 20%
EM1908628-001	BH01 0.5-0.6	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	4	3	47.6	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	240	230	5.01	0% - 20%
		EG005T: Cobalt	7440-48-4	2	mg/kg	12	15	17.1	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	47	56	16.4	0% - 20%
		EG005T: Arsenic	7440-38-2	5	mg/kg	18	22	19.2	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	411	417	1.44	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	228	257	11.8	0% - 20%
		EG005T: Manganese	7439-96-5	5	mg/kg	377	433	13.7	0% - 20%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	40	28	34.9	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	283	302	6.58	0% - 20%
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
EM1908628-010	BH05 1.4-1.5	EG005T: Beryllium	7440-41-7	1	mg/kg	2	2	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	20	20	0.00	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	11	11	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	31	33	8.36	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	8	10	24.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	16	20	21.5	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	9	12	26.7	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	95	109	13.3	0% - 20%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	8 <u>.</u>	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2390833) - continued							
EM1908628-010	BH05 1.4-1.5	EG005T: Vanadium	7440-62-2	5	mg/kg	66	79	17.3	0% - 50%
		EG005T: Zinc	7440-66-6	5	mg/kg	51	57	10.8	0% - 50%
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
EA001: pH in soil u	sing 0.01M CaCl extrac	t (QC Lot: 2392312)							
EM1908567-003	Anonymous	EA001: pH (CaCl2)	220	0.1	pH Unit	8.2	8.6	4.76	0% - 20%
EA055: Moisture Co	ntent (Dried @ 105-110	0°C) (QC Lot: 2392617)					1	(Santa	
EM1908472-034	Anonymous	EA055: Moisture Content		0.1	%	11.7	11.7	0.00	0% - 50%
EM1908628-007	BH04 0.5-0.6	EA055: Moisture Content		0.1	%	16.7	19.8	16.7	0% - 50%
EA055: Moisture Co	ntent (Dried @ 105-11)	1°C) (OC Lot: 2392618)				1	A AND A		
EM1908628-017	Dunlicate	EA055: Moisture Content		0.1	%	15.2	19.4	24.2	0% - 50%
EM1908637-010	Anonymous	EA055: Moisture Content		0.1	%	13.1	13.3	1.40	0% - 50%
EC025T: Total Pag	averable Mercury by El	MS (OC Lat: 2200824)					1010		0.0 0010
E00331, Total Kec	PHO10506	M3 (QC LOL 2390834)	7420 07 6	0.1	malka	<0.1	0.2	70.5	No Limit
EM1908628-001	BH01 0.5-0.6	EG0351: Mercury	7439-97-0	0.1	mg/kg	<0.1	0.2	70.5	No Limit
EW1908028-010	BH03 1.4-1.3	EG0351: Mercury	1435-51-0	0.1	ingrig	50,1	50.1	0.00	NO LITIN
EP075(SIM)B: Polyr	uclear Aromatic Hydro	ocarbons (QC Lot: 2392433)	a					0.00	1 10 10 10
EM1908628-001	BH01 0.5-0.6	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EM1908628-011	BH06 0.5-0.6	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit

Page	: 4 of 11
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Sub-Matrix: SOIL					-	Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Poly	nuclear Aromatic Hydro	ocarbons (QC Lot: 2392433) - continued							
EM1908628-011	BH06 0.5-0.6	EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0,5	0.00	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 2389780)							
EM1908628-001	BH01 0.5-0.6	EP080: C6 - C9 Eraction		10	mg/kg	<10	<10	0.00	No Limit
EM1908628-011	BH06 0.5-0.6	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total P	etroleum Hvdrocarbons	(QC Lot: 2392434)			ST. 874.				10.
EM1908628-001	BH01 0.5-0.6	EP071: C15 - C28 Fraction		100	mg/kg	1170	1070	8.84	0% - 50%
		EP071: C29 - C36 Fraction	1000	100	ma/ka	710	680	3.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	1880	1750	7.16	0% - 20%
EM1908628-011	BH06 0.5-0.6	EP071: C15 - C28 Fraction		100	mg/kg	290	290	0.00	No Limit
cent on an and the set of a state		EP071: C29 - C36 Fraction		100	mg/kg	290	300	4.56	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	580	590	1.71	0% - 50%
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2389780)							
EM1908628-001	BH01 0.5-0.6	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.00	No Limit
EM1908628-011	BH06 0.5-0.6	EP080: C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ons - NEPM 2013 Fractions (QC Lot: 2392434)			and the second second	1	1		
EM1908628-001	BH01 0.5-0.6	EP071: >C16 - C34 Fraction		100	ma/ka	1620	1510	7.20	0% - 50%
		EP071: >C34 - C40 Fraction	<u></u>	100	mg/kg	280	280	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	1900	1790	5.96	0% - 20%
EM1908628-011	BH06 0.5-0.6	EP071: >C16 - C34 Fraction		100	mg/kg	480	490	0.00	No Limit
1/1/5/19209869864598849887108		EP071: >C34 - C40 Fraction		100	mg/kg	140	150	10.3	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: >C10 - C40 Fraction (sum)	ينبينا	50	mg/kg	620	640	3.17	0% - 50%
EP080: BTEXN (QC	C Lot: 2389780)								
EM1908628-001	BH01 0.5-0.6	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
CONTRACTOR C	0.00073562033562023522	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
	12 C				10 0.520				du contrata actual

Page	: 5 of 11
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Sub-Matrix: SOIL							Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)				
EP080: BTEXN (QC	Lot: 2389780) - contin	ued											
EM1908628-001	BH01 0.5-0.6	EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				
EM1908628-011	BH06 0.5-0.6	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit				
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit				
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit				
ub-Matrix: WATER						Laboratory	Duplicate (DUP) Report						
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)				
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 2393314)		-10									
EM1908629-004	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit				
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.003	0.003	0.00	No Limit				
		EG020A-F: Bervllium	7440-41-7	0.001	mg/L	< 0.001	< 0.001	0.00	No Limit				
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.036	0.036	0.00	0% - 20%				
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.00	No Limit				
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	0.003	0.003	0.00	No Limit				
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.004	0.005	0.00	No Limit				
		EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.00	No Limit				
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.075	0.074	0.00	0% - 20%				
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	0.067	0.068	0.00	0% - 20%				
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.066	0.064	3.76	0% - 50%				
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit				
		EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit				
		EG020A-F: Boron	7440-42-8	0.05	mg/L	0.06	0.06	0.00	No Limit				
EM1908400-002	Anonymous	EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit				
		EG020A-F: Arsenic	7440-38-2	0.001	mg/L	0.003	0.003	0.00	No Limit				
		EG020A-F: Beryllium	7440-41-7	0.001	mg/L	<0.001	<0.001	0.00	No Limit				
		EG020A-F: Barium	7440-39-3	0.001	mg/L	0.034	0.032	6.69	0% - 20%				
		EG020A-F: Chromium	7440-47-3	0.001	mg/L	0.002	0.002	0.00	No Limit				
		EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	<0.001	0.00	No Limit				
		EG020A-F: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.00	No Limit				
		EG020A-F: Lead	7439-92-1	0.001	mg/L	0.001	0.001	0.00	No Limit				
		EG020A-F: Manganese	7439-96-5	0.001	mg/L	0.048	0.044	8.98	0% - 20%				
		EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.001	0.00	No Limit				
		EG020A-F: Zinc	7440-66-6	0.005	mg/L	0.010	0.009	0.00	No Limit				
		EG020A-F: Selenium	7782-49-2	0.01	mg/L	< 0.01	< 0.01	0.00	No Limit				

Page Work Order Client Project	: 6 of 11 : EM1908628 : GEO-ENVIRONMEN : Building 3	ITAL SOLUTIONS							ALS
Sub-Matrix: WATER			Γ			Laboratory I	Duplicate (DUP) Report	6	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG020F: Dissolved	Metals by ICP-MS (QC	Lot: 2393314) - continued							
EM1908400-002	Anonymous	EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	<0.01	0.00	No Limit
	1. A REPORT OF A REPORT OF A	EG020A-F: Boron	7440-42-8	0.05	mg/L	5.47	5.02	8.51	0% - 20%
EG035F: Dissolved	Mercury by FIMS (QC)	Lot: 2393315)							h.
EM1908669-007	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	< 0.0001	<0.0001	0.00	No Limit
EM1908400-002	Anonymous	EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.00	No Limit
EP080/071: Total Pe	troleum Hydrocarbons	(QC Lot: 2389363)						and database	
EM1908436-001	Anonymous	EP080; C6 - C9 Fraction		20	µg/L	20	<20	0.00	No Limit
EM1908522-003	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.00	No Limit
EP080/071: Total Re	coverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 2389363)					d)		
EM1908436-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	30	30	0.00	No Limit
EM1908522-003	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.00	No Limit
EP080: BTEXN (QC	Lot: 2389363)								
EM1908436-001	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
	Course of an Actual Contractions	EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	0.00	No Limit
		EP080; ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	55	58	5.75	0% - 50%
EM1908522-003	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.00	No Limit
		EP080: Toluene	108-88-3	2	µg/L	8	9	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	<2	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.00	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.00	No Limit

Page	: 7 of 11
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)T: Total Metals by ICP-AES (QCL	Lot: 2390833)								
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	94.1	78	107	
EG005T: Barium	7440-39-3	10	mg/kg	<10	143 mg/kg	93.2	76	110	
EG005T: Beryllium	7440-41-7	1	mg/kg	<1	5.63 mg/kg	98.1	84	113	
EG005T: Boron	7440-42-8	50	mg/kg	<50	33.2 mg/kg	97.1	84	126	
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	88.3	76	108	
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	91.3	78	110	
EG005T: Cobalt	7440-48-4	2	mg/kg	<2	16 mg/kg	93.1	78	112	
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	93.8	78	108	
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	89.5	78	106	
EG005T: Manganese	7439-96-5	5	mg/kg	<5	130 mg/kg	98.3	81	110	
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	95.3	80	109	
EG005T: Selenium	7782-49-2	5	mg/kg	<5	5.37 mg/kg	101	92	110	
EG005T: Vanadium	7440-62-2	5	mg/kg	<5	29.6 mg/kg	90.8	78	106	
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	97.1	79	110	
EG035T: Total Recoverable Mercury by FIMS ((QCLot: 2390834)								
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	98.8	77	104	
EP075(SIM)B: Polynuclear Aromatic Hydrocarb	ons (QCLot: 2392433)								
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	105	77	129	
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	109	74	130	
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	104	78	129	
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	104	78	128	
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	105	83	130	
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	111	76	129	
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	110	79	134	
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	111	84	135	
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	110	72	125	
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	109	76	135	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	3 mg/kg	101	69	123	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	106	77	131	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	103	65	116	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	96.6	65	124	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	101	66	127	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	94.9	65	124	

Page : 8 of 11 Work Order : EM1908628 Client : GEO-ENVIRONMENTAL SOLUTIONS Project : Building 3

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 2389780)								
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	92,4	61	127	
EP080/071: Total Petroleum Hydrocarbons (QC	Lot: 2392434)								
EP071: C10 - C14 Fraction		50	mg/kg	<50	688 mg/kg	105	72	122	
EP071: C15 - C28 Fraction		100	mg/kg	<100	3100 mg/kg	108	84	123	
EP071: C29 - C36 Fraction		100	mg/kg	<100	1490 mg/kg	98.2	79	119	
EP071: C10 - C36 Fraction (sum)	222	50	mg/kg	<50	1000	(222)	10000	(2222)	
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 Fractions (OCL)	ot: 2389780)							
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	89.0	60	125	
EP080/071: Total Recoverable Hydrocarbons - N	EPM 2013 Fractions (OCL	at- 2392434)							
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1050 mg/kg	103	77	121	
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3960 mg/kg	100	83	121	
EP071: >C34 - C40 Fraction		100	mg/kg	<100	280 mg/kg	108	65	123	
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50			() (
EP080: BTEXN (OCI of: 2389780)				1				10	
EP080: Benzene	71-43-2	0.2	ma/ka	<0.2	2 ma/ka	99.5	63	119	
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	96.5	67	126	
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	95.1	66	124	
EP080: meta- & para-Xvlene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	95.6	68	128	
	106-42-3			171903877				11100000	
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	98.1	73	128	
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	89.6	61	123	
Cole Matthe WATER				Method Blank (MB)		Laboratory Control Spike /I C	S) Report	10	
Sub-Matrix: WATER				Report	Spike	Spike Recovery (%)	Recovery Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020E: Dissolved Metals by ICP-MS (OCI of: 2	393314)								
EG020A-F: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	98.0	91	107	
EG020A-F: Bervllium	7440-41-7	0.001	mg/L	<0.001	0.1 mg/L	86.3	82	113	
EG020A-F: Barium	7440-39-3	0.001	mg/L	<0.001	0.1 mg/L	90.6	84	106	
EG020A-F: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	88.7	84	104	
EG020A-F: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	88.3	83	103	
EG020A-F: Cobalt	7440-48-4	0.001	mg/L	<0.001	0.1 mg/L	85.7	83	106	
EG020A-F: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	85.3	82	103	
EG020A-F: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	89.1	83	105	
EG020A-F: Manganese	7439-96-5	0.001	mg/L	<0.001	0.1 mg/L	87.0	83	105	
EG020A-F: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	88.3	82	106	
EG020A-F: Selenium	7782-49-2	0.01	mg/L	<0.01	0.1 mg/L	87.3	82	109	
EG020A-F: Vanadium	7440-62-2	0.01	mg/L	<0.01	0.1 mg/L	85.3	83	106	
EG020A-F: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	88.6	85	109	
Page : 9 of 11 Work Order : EM1908628 Client : GEO-ENVIRONMENTAL SOLUTIONS Project : Building 3

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report			
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG020F: Dissolved Metals by ICP-MS (QCLot: 2393314)	- continued								
EG020A-F: Boron	7440-42-8	0.05	mg/L	<0.05	0.5 mg/L	96,9	84	116	
EG035F: Dissolved Mercury by FIMS (QCLot: 2393315)									
EG035F: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	88.5	76	114	
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QC	Lot: 2388359)								
EP075(SIM): Naphthalene	91-20-3	1	µg/L	<1.0	5 µg/L	64.7	48	110	
EP075(SIM): Acenaphthylene	208-96-8	1	µg/L	<1.0	5 µg/L	77.5	50	117	
EP075(SIM): Acenaphthene	83-32-9	1	µg/L	<1.0	5 µg/L	74.7	53	117	
EP075(SIM): Fluorene	86-73-7	1	µg/L	<1.0	5 µg/L	77.4	54	118	
EP075(SIM): Phenanthrene	85-01-8	1	µg/L	<1.0	5 µg/L	80.1	59	119	
EP075(SIM): Anthracene	120-12-7	1	µg/L	<1.0	5 µg/L	82.7	51	113	
EP075(SIM): Fluoranthene	206-44-0	1	µg/L	<1.0	5 µg/L	82.5	61	120	
EP075(SIM): Pyrene	129-00-0	1	µg/L	<1.0	5 µg/L	83.2	56	120	
EP075(SIM): Benz(a)anthracene	56-55-3	1	µg/L	<1.0	5 µg/L	83.3	53	120	
EP075(SIM): Chrysene	218-01-9	1	µg/L	<1.0	5 µg/L	67.3	57	122	
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	1	µg/L	<1.0	5 µg/L	91.0	56	131	
EP075(SIM): Benzo(k)fluoranthene	207-08-9	1	µg/L	<1.0	5 µg/L	92.3	59	124	
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	5 µg/L	93.7	54	124	
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	µg/L	<1.0	5 µg/L	86.6	55	124	
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	µg/L	<1.0	5 µg/L	86.5	54	124	
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	µg/L	<1.0	5 µg/L	91.0	56	124	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 238	8357)								
EP071: C10 - C14 Fraction		50	µg/L	<50	4030 µg/L	52.1	50	129	
EP071: C15 - C28 Fraction		100	µg/L	<100	15600 µg/L	65.6	55	132	
EP071: C29 - C36 Fraction		50	µg/L	<50	7820 µg/L	62.4	55	130	
EP080/071: Total Petroleum Hydrocarbons (QCLot: 238	9363)								
EP080: C6 - C9 Fraction	3000	20	µg/L	<20	360 µg/L	100	65	126	
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	13 Fractions (QCLo	t: 2388357)				10		ð	
EP071: >C10 - C16 Fraction	The state of the s	100	µg/L	<100	5960 µg/L	59.5	53	129	
EP071: >C16 - C34 Fraction		100	µg/L	<100	20700 µg/L	61.6	56	131	
EP071: >C34 - C40 Fraction	2222	100	µg/L	<100	1520 µg/L	59.6	53	136	
EP080/071: Total Recoverable Hydrocarbons - NEPM 20	13 Fractions (QCLo	t: 2389363)							
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	450 µg/L	95.4	64	124	
EP080: BTEXN (QCLot: 2389363)								1	
EP080: Benzene	71-43-2	1	µg/L	<1	20 µg/L	97.4	69	123	
EP080: Toluene	108-88-3	2	µg/L	<2	20 µg/L	102	73	124	
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	20 µg/L	99.2	71	125	

Page : 10 of 11 Work Order : EM1908628 Client : GEO-ENVIRONMENTAL SOLUTIONS Project : Building 3

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP080: BTEXN (QCLot: 2389363) - continued									
EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	40 µg/L	105	72	129	
	106-42-3					0.0171			
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	20 µg/L	106	76	129	
EP080: Naphthalene	91-20-3	5	µg/L	<5	5 µg/L	99.5	70	125	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Recovery I	imits (%).	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High	
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 2390833)							
EM1908628-002	BH01 1.4-1.5	EG005T: Arsenic	7440-38-2	50 mg/kg	87.4	78	124	
		EG005T: Barium	7440-39-3	50 mg/kg	92.3	71	135	
		EG005T: Beryllium	7440-41-7	50 mg/kg	93.7	85	125	
		EG005T: Cadmium	7440-43-9	50 mg/kg	93.6	84	116	
		EG005T: Chromium	7440-47-3	50 mg/kg	98.2	79	121	
		EG005T: Copper	7440-50-8	50 mg/kg	90.2	82	124	
		EG005T: Lead	7439-92-1	50 mg/kg	81.7	76	124	
		EG005T: Manganese	7439-96-5	50 mg/kg	80.9	68	136	
	EG005T: Nickel	7440-02-0	50 mg/kg	90.7	78	120		
		EG005T: Selenium	7782-49-2	50 mg/kg	75.2	71	125	
	EG005T: Vanadium	7440-62-2	50 mg/kg	91.7	76	124		
		EG005T: Zinc	7440-66-6	50 mg/kg	85.1	74	128	
EG035T: Total Red	coverable Mercury by FIMS (QCLot: 2390834)							
EM1908628-002	BH01 1.4-1.5	EG035T: Mercury	7439-97-6	0.5 mg/kg	110	76	116	
P075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 23924	33)						
EM1908628-003	BH02 0.5-0.6	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	95.6	67	117	
		EP075(SIM): Pyrene	129-00-0	3 mg/kg	88.7	52	148	
EP080/071: Total P	Petroleum Hydrocarbons (QCLot: 2389780)							
EM1908628-002	BH01 1.4-1.5	EP080: C6 - C9 Fraction		28 mg/kg	63.6	42	131	
P080/071: Total P	Petroleum Hydrocarbons (QCLot: 2392434)							
EM1908628-002	BH01 1.4-1.5	EP071: C10 - C14 Fraction		688 mg/kg	111	53	123	
		EP071: C15 - C28 Fraction		3100 mg/kg	102	70	124	
			NT-01/02-05		1 022	~ 1	20.00	

 Page
 : 11 of 11

 Work Order
 : EM1908628

 Client
 : GEO-ENVIRONMENTAL SOLUTIONS

 Project
 : Building 3

Sub-Matrix: SOIL			M	atrix Spike (MS) Report			
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fr	actions (QCLot: 2389780) - continued					
EM1908628-002	BH01 1.4-1.5	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	59.4	39	129
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fr	actions (QCLot: 2392434)					-
EM1908628-002	BH01 1.4-1.5	EP071: >C10 - C16 Fraction		1050 mg/kg	105	65	123
		EP071: >C16 - C34 Fraction		3960 mg/kg	93.6	67	121
	EP071: >C34 - C40 Fraction		280 mg/kg	81.8	44	126	
P080: BTEXN (Q	CLot: 2389780)	the second s					
M1908628-002	BH01 1.4-1.5	EP080: Benzene	71-43-2	2 mg/kg	86.5	50	136
	CA492483 020401484-5	EP080: Toluene	108-88-3	2 mg/kg	85.5	56	139
b-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	imits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Hig
G020F: Dissolve	d Metals by ICP-MS (OCLot: 2393314)						
M1908400-002	Anonymous	EG020A-E: Arsenic	7440-38-2	0.2 ma/L	102	85	131
	EG020A-F: Berdlium	7440-41-7	0.2 mg/L	94.5	73	141	
		EG020A-F: Barium	7440-39-3	0.2 mg/L	116	75	127
		EG020A-F: Cadmium	7440-43-9	0.05 mg/L	83.6	81	133
		EG020A-F: Chromium	7440-47-3	0.2 mg/L	81.4	71	135
		EG020A-F: Cobalt	7440-48-4	0.2 mg/L	97.5	78	132
		EG020A-F: Copper	7440-50-8	0.2 mg/L	90.4	76	130
		EG020A-F: Lead	7439-92-1	0.2 mg/L	90.7	75	133
		EG020A-F: Manganese	7439-96-5	0.2 mg/L	102	64	134
		EG020A-F: Nickel	7440-02-0	0.2 mg/L	90.9	73	131
		EG020A-F: Vanadium	7440-62-2	0.2 mg/L	87.8	73	131
		EG020A-F: Zinc	7440-66-6	0.2 mg/L	86.8	75	131
G035F: Dissolve	d Mercury by FIMS (QCLot: 2393315)						
M1908532-008	Anonymous	EG035F: Mercury	7439-97-6	0.01 mg/L	84.0	70	120
P080/071: Total F	Petroleum Hydrocarbons (QCLot: 2389363)		And		h and a		
M1908436-002	Anonymous	EP080: C6 - C9 Fraction		280 µg/L	78.8	43	125
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fr	actions (QCLot: 2389363)					
EM1908436-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 µg/L	73.9	44	122
P080: BTEXN (Q	CLot: 2389363)			A			
M1908436-002	Anonymous	EP080: Benzene	71-43-2	20 µg/L	99.4	68	130
	1.0591.059 (1696).	EP080: Toluene	108-88-3	20.00/	103	72	132

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	EM1908628	Page	: 1 of 9		
Client	: GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	: Environmental Division Melbourne		
Contact	: SARAH JOYCE	Telephone	: +6138549 9630		
Project	: Building 3	Date Samples Received	: 04-Jun-2019		
Site		Issue Date	: 12-Jun-2019		
Sampler	: JOHN PAUL CUMMING	No. of samples received	: 18		
Order number		No. of samples analysed	: 18		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- NO Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

<u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 9
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Outliers : Frequency of Quality Control Samples

Matrix: WATER

Quality Control Sample Type	C	Count		e (%)	Quality Control Specification	
Method	QC	Regular	Actual	Expected		
Laboratory Duplicates (DUP)						
PAH/Phenols (GC/MS - SIM)	0	3	0.00	10.00	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	0	3	0.00 10.00		NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)						
PAH/Phenols (GC/MS - SIM)	0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	0	3	0.00	5.00	NEPM 2013 B3 & ALS QC Standard	

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; 🗹 = Withi	n holding time
Method Sample Date Extraction / Preparation			Analysis					
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA001: pH in soil using 0.01M CaCl extract								
Soil Glass Jar - Unpreserved (EA001)								
BH01 0.5-0.6,	BH03 1.4-1.5,	31-May-2019	07-Jun-2019	07-Jun-2019	1	07-Jun-2019	07-Jun-2019	1
BH06 0.5-0.6,	BH06 1.4-1.5							14.5
EA055: Moisture Content (Dried @ 105-110	°C)							
Soil Glass Jar - Unpreserved (EA055)								
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019		1.000		07-Jun-2019	14-Jun-2019	1
BH02 0.5-0.6,	BH02 1.4-1.5,							
BH03 0.5-0.6,	BH03 1.4-1.5,							
BH04 0.5-0.6,	BH04 1.4-1.5,							
BH05 0.5-0.6,	BH05 1.4-1.5,							
BH06 0.5-0.6,	BH06 1.4-1.5,							
BH07 0.5-0.6,	BH07 1.4-1.5,							
BH08 0.5-0.6,	BH08 1.4-1.5,							
Duplicate								

Page	: 3 of 9
Work Order	; EM1908628
Client	GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Matrix: SOIL					Evaluation	n: × = Holding time	breach ; 🗹 = Withi	n holding time
Method		Sample Date	E	draction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)T: Total Metals by ICP-	AES							
Soil Glass Jar - Unpreserved (EG005T)							
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019	08-Jun-2019	27-Nov-2019	5	11-Jun-2019	27-Nov-2019	1
BH02 0.5-0.6,	BH02 1.4-1.5,							
BH03 0.5-0.6,	BH03 1.4-1.5,							
BH04 0.5-0.6,	BH04 1.4-1.5,							
BH05 0.5-0.6,	BH05 1.4-1.5,							
BH06 0.5-0.6,	BH06 1.4-1.5,							
BH07 0.5-0.6,	BH07 1.4-1.5,							
BH08 0.5-0.6,	BH08 1.4-1.5,							
Duplicate								
EG035T: Total Recoverable Mercury	by FIMS							
Soil Glass Jar - Unpreserved (EG035T)		VII.0					
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019	08-Jun-2019	28-Jun-2019	1	08-Jun-2019	28-Jun-2019	1
BH02 0.5-0.6,	BH02 1.4-1.5,							
BH03 0.5-0.6,	BH03 1.4-1.5,							
BH04 0.5-0.6,	BH04 1.4-1.5,							
BH05 0.5-0.6,	BH05 1.4-1.5,							
BH06 0.5-0.6,	BH06 1.4-1.5,							
BH07 0.5-0.6,	BH07 1.4-1.5,							
BH08 0.5-0.6,	BH08 1.4-1.5,							
Duplicate	A-344 100 5 (1723)							
EP075(SIM)B: Polynuclear Aromatic	Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(S	SIM))	1970/1076 - 408-2076	STATISTICS CONTRACTORS	total are reported		1000000 (A 100000000		
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019	07-Jun-2019	14-Jun-2019	1	07-Jun-2019	17-Jul-2019	1
BH02 0.5-0.6,	BH02 1.4-1.5,							
BH03 0.5-0.6,	BH03 1.4-1.5,							
BH04 0.5-0.6,	BH04 1.4-1.5,							
BH05 0.5-0.6,	BH05 1.4-1.5,							
BH06 0.5-0.6,	BH06 1.4-1.5,							
BH07 0.5-0.6,	BH07 1.4-1.5,							
BH08 0.5-0.6,	BH08 1.4-1.5,							
Duplicate								

Page : 4 of 9 Work Order : EM1908628 Client : GEO-ENVIRONMENTAL SOLUTIONS Project : Building 3

Matrix: SOIL					Evaluation	n: 🛎 = Holding time	a breach ; 🗹 = With	in holding tim	
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation	
EP080/071: Total Petroleum Hydrocarbons									
Soil Glass Jar - Unpreserved (EP080)									
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019	06-Jun-2019	14-Jun-2019	1	07-Jun-2019	14-Jun-2019	1	
BH02 0.5-0.6,	BH02 1.4-1.5,								
BH03 0.5-0.6,	BH03 1.4-1.5,								
BH04 0.5-0.6,	BH04 1.4-1.5,								
BH05 0.5-0.6,	BH05 1.4-1.5,								
BH06 0.5-0.6,	BH06 1.4-1.5,								
BH07 0.5-0.6,	BH07 1.4-1.5,								
BH08 0.5-0.6,	BH08 1.4-1.5,								
Duplicate									
Soil Glass Jar - Unpreserved (EP071)									
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019	07-Jun-2019	14-Jun-2019	1	07-Jun-2019	17-Jul-2019	1	
BH02 0.5-0.6,	BH02 1.4-1.5,								
BH03 0.5-0.6,	BH03 1.4-1.5.								
BH04 0.5-0.6.	BH04 1.4-1.5.								
BH05 0.5-0.6.	BH05 1.4-1.5.								
BH06 0.5-0.6	BH06 1.4-1.5.								
BH07.0.5-0.6	BH07 1 4-1 5								
BH08 0.5-0.6	BH08 1 4-1 5								
Duplicate	prive his har								
ED000/074, T-t-1 D	NEDH 0042 Franktion								
Seil Class Jac. Uppresented (EP080)	NEPM 2013 Fractions		Ť	Y		1		ř.	
BH01 0 5-0 6	BH01 1 4-1 5	31-May-2019	06-Jun-2019	14-Jun-2019	1	07-Jun-2019	14-Jun-2019	1	
BH02 0 5-0 6	BH0214-15			11.000					
BH03 0 5 0 6	BH02 1.4-1.5, BH03 1.4-1.5								
BH03 0.5-0.0,	BH03 1.4-1.5, BH04 1.4.1 5								
BH04 0.5-0.6,	BH04 1.4-1.3, BH05 1.4.1.5								
BH05 0.5-0.6,	BH05 1.4-1.5,								
BH00 0.5-0.6,	BH00 1.4-1.5,								
BH07 0.5-0.6,	BH07 1.4-1.5,								
BH08 0.5-0.6,	BH08 1.4-1.5,								
Duplicate									
Soil Glass Jar - Unpreserved (EP071)	PH011415	31-May-2010	07- Jun-2019	14- Jun-2019	1	07- Jun-2010	17- Jul-2019	1	
BH01 0.5-0.6,	BH011.4-1.5,	51-may-2015	07-5011-2013	14-5011-2015	~	07-5011-2013	17-501-2015	*	
BH02 0.5-0.6,	BH02 1.4-1.5,								
BH03 0.5-0.6,	BH03 1.4-1.5,								
BH04 0.5-0.6,	BH04 1.4-1.5,								
BH05 0.5-0.6,	BH05 1.4-1.5,								
ВН06 0.5-0.6,	BH06 1.4-1.5,								
BH07 0.5-0.6,	BH07 1.4-1.5,								
BH08 0.5-0.6,	BH08 1.4-1.5,								
Duplicate									

Page	5 of 9
Work Order	: EM1908628
Client	GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Matrix: SOIL					Evaluation	n: 🗴 = Holding time	breach ; 🗹 = Withi	n holding time
Method		Sample Date	E	traction / Preparation		Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN								
Soil Glass Jar - Unpreserved (EP080)		14						
BH01 0.5-0.6,	BH01 1.4-1.5,	31-May-2019	06-Jun-2019	14-Jun-2019	1	07-Jun-2019	14-Jun-2019	1
BH02 0.5-0.6,	BH02 1.4-1.5,	- A COLUMN A	104100-000-011000-0000			1001002/200022200002		
BH03 0.5-0.6,	BH03 1.4-1.5,							
BH04 0.5-0.6,	BH04 1.4-1.5,							
BH05 0.5-0.6,	BH05 1.4-1.5,							
BH06 0.5-0.6,	BH06 1.4-1.5,							
BH07 0.5-0.6,	BH07 1.4-1.5,							
BH08 0.5-0.6,	BH08 1.4-1.5,							
Duplicate								

Matrix: WATER				Evaluation	i: × = Holding time	breach ; 🗹 = Withi	in holding time
Method	Sample Date	Ex	traction / Preparation		Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020F: Dissolved Metals by ICP-MS							
Clear Plastic Bottle - Filtered; Lab-acidified (EG020A-F) Rinsate	31-May-2019			10000	07-Jun-2019	27-Nov-2019	1
EG035F: Dissolved Mercury by FIMS							
Clear Plastic Bottle - Filtered; Lab-acidified (EG035F) Rinsate	31-May-2019		1125220		11-Jun-2019	28-Jun-2019	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM)) Rinsate	31-May-2019	05-Jun-2019	07-Jun-2019	1	06-Jun-2019	15-Jul-2019	1
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) Rinsate	31-May-2019	05-Jun-2019	07-Jun-2019	1	06-Jun-2019	15-Jul-2019	1
Amber VOC Vial - Sulfuric Acid (EP080) Rinsate	31-May-2019	06-Jun-2019	14-Jun-2019	1	07-Jun-2019	14-Jun-2019	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) Rinsate	31-May-2019	05-Jun-2019	07-Jun-2019	1	06-Jun-2019	15-Jul-2019	1
Amber VOC Vial - Sulfuric Acid (EP080) Rinsate	31-May-2019	06-Jun-2019	14-Jun-2019	1	07-Jun-2019	14-Jun-2019	1
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) Rinsate	31-May-2019	06-Jun-2019	14-Jun-2019	1	07-Jun-2019	14-Jun-2019	1

Page	: 6 of 9
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	entrol frequency	not within specification ; 🖌 = Quality Control frequency within specif
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	00	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	4	40	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
oH in soil using a 0.01M CaCl2 extract	EA001	1	7	14.29	10.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Mercury by FIMS	EG035T	2	17	11.76	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	4	20	20.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
aboratory Control Samples (LCS)							
AH/Phenols (SIM)	EP075(SIM)	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Aethod Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
otal Mercury by FIMS	EG035T	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Jatrix Snikes (MS)				//			
PAH/Phenols (SIM)	EP075(SIM)	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Mercury by FIMS	EG035T	1	17	5.88	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
RH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
FRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
atrix: WATER	1			Evaluatio	m: x = Ouality Co	ntrol frequency	not within specification $(\sqrt{2} = 0)$ within specification $(\sqrt{2} = 0)$
auto, WATER		2	Sacurat	Evaluatio	Data (%)	and nequency	Quality Control Specification
Analytical Methods	Method	00	Regular	Actual	Expected	Evaluation	wany contor specification
abarates (DUD)	1/12/10/21/12/07/2		i su auraf	PIGLOG/	Labortod	ALEXCHAMINTS	
Dissolved Mercury by FIMS	ECO26E	2	18	11.11	10.00	1	NEPM 2013 B3 & ALS OC Standard
Dissolved Metals by ICP-MS - Suite A	EG035F	2	19	10.53	10.00	1	NEPM 2013 B3 & ALS OC Standard
PAH/Phenols (GC/MS - SIM)	EB020A-P	0	3	0.00	10.00		NEPM 2013 B3 & ALS OC Standard
RH - Semivolatile Fraction	EP073(SIM)	0	3	0.00	10.00		NEPM 2013 B3 & ALS OC Standard
RH Volatiles/RTFX	EP0/1	2	18	11 11	10.00	-	NEPM 2013 B3 & ALS OC Standard
THE FORMEGRAPTER	EP080	*	10		10.00	~	HEI III EVIO DO CIAEO DO Otalidado

Page	: 7 of 9
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	; Building 3

Matrix: WATER				Evaluatio	n: × = Quality Co	ntrol frequency	not within specification ; 🗸 = Quality Control frequency within specification.
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification
Analytical Methods	Method	ົວດ	Reautar	Actual	Expected	Evaluation	
Laboratory Control Samples (LCS) - Continued							
Dissolved Mercury by FIMS	EG035F	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Dissolved Mercury by FIMS	EG035F	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	3	33.33	5.00	1	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Dissolved Mercury by FIMS	EG035F	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard
Dissolved Metals by ICP-MS - Suite A	EG020A-F	1	19	5.26	5.00	1	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	3	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	3	0.00	5.00	*	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	18	5.56	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 8 of 9
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	· Building 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001	SOIL	In house: Referenced to Rayment and Lyons (2011) 4B3 (mod.) or 4B4 (mod.) 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3)
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Dissolved Metals by ICP-MS - Suite A	EG020A-F	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. Samples are 0.45µm filtered prior to analysis. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Dissolved Mercury by FIMS	EG035F	WATER	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) Samples are 0.45µm filtered prior to analysis. FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the filtered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015A The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)

Page	: 9 of 9
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Analytical Methods	Method	Matrix	Method Descriptions
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270D Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260B Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM (2013) Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
pH in soil using a 0.01M CaCl2 extract	EA001-PR	SOIL	In house: Referenced to Rayment and Higginson 4B1, 10 g of soil is mixed with 50 mL of 0.01M CaCl2 and tumbled end over end for 1 hour. pH is measured from the continuous suspension. This method is compliant with NEPM (2013) Schedule B(3) (Method 103)
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510B 100 mL to 1L of sample is transferred to a separatory funnel and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated and concentrated for analysis. This method is compliant with NEPM (2013) Schedule B(3). ALS default excludes sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for sparging.

	QUALITY	CONTROL REPORT	
Work Order	ES1917553	Page	≈ 1 of 8
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	Environmental Division Sydney
Contact	DR JOHN PAUL CUMMING	Contact	: Shirley LeCornu
Address	29 KIRKSWAY PLACE BATTERY POINT TASMANIA, AUSTRALIA 7004	Address	277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	+61 03 6223 1839	Telephone	: +6138549 9630
Project	Building 3	Date Samples Received	: 06-Jun-2019
Order number		Date Analysis Commenced	:11-Jun-2019
C-O-C number		Issue Date	: 14-Jun-2019
Sampler	JPC		Hac-MRA NATA
Site			
Quote number	EN/222		Accreditation No. 82
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW
Peter Wu		Sydney Inorganics, Smithfield, NSW

RIGHT SOLUTIONS RIGHT PARTNER

 Page
 : 2 of 8

 Work Order
 : ES1917553

 Client
 : GEO-ENVIRONMENTAL SOLUTIONS

 Project
 : Building 3

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 2398067)							
ES1917618-072	Anonymous	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	20	20	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	9	14	41.7	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	4	4	0.00	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	6	5	0.00	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	5	14	88.2	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	9	10	0.00	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	37	29	24.8	No Limit
		EG005T: Manganese	7439-96-5	5	mg/kg	298	292	2.04	0% - 20%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit
		EG005T: Vanadium	7440-62-2	5	mg/kg	13	12	0.00	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	32	45	32.5	No Limit
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
ES1917553-001	INTER LAB SPLIT	EG005T: Beryllium	7440-41-7	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Barium	7440-39-3	10	mg/kg	70	90	20.7	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	18	12	39.2	No Limit
		EG005T: Cobalt	7440-48-4	2	mg/kg	6	7	15.5	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	25	24	4.82	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	20	30	42.6	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	179	212	16.8	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	191	228	17.7	0% - 20%
		EG005T: Manganese	7439-96-5	5	mg/kg	213	231	7.96	0% - 20%
		EG005T: Selenium	7782-49-2	5	mg/kg	<5	<5	0.00	No Limit

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	2	L MILL MAR CONSTR
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)T: T	otal Metals by ICP-AES (0	QC Lot: 2398067) - continued							
ES1917553-001	INTER LAB SPLIT	EG005T: Vanadium	7440-62-2	5	mg/kg	28	18	40.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	112	114	1.82	0% - 20%
		EG005T: Boron	7440-42-8	50	mg/kg	<50	<50	0.00	No Limit
EA055: Moisture C	ontent (Dried @ 105-110°	C) (QC Lot: 2398072)							
ES1917618-010	Anonymous	EA055: Moisture Content	1000	0.1	%	12.4	11.7	5.67	0% - 50%
ES1917618-077	Anonymous	EA055: Moisture Content		0.1	%	15.4	15.3	0.656	0% - 50%
EG035T: Total Red	coverable Mercury by FIM	IS (QC Lot: 2398068)				0	4		
ES1917553-001	INTER LAB SPLIT	EG035T: Mercury	7439-97-6	0.1	ma/ka	<0.1	<0.1	0.00	No Limit
ES1917641-009	Anonymous	EG035T: Mercury	7439-97-6	0.1	ma/ka	<0.1	<0.1	0.00	No Limit
EP075/SIM\B: Poly	muclear Aromatic Hydroc	arbons (OC Lot: 239/409)				1	1		
ES1017585 001	Anonymous		01 20 2	0.5	malka	<0.5	<0.5	0.00	No Limit
E31317303-001	Anonymous	EP075(SIM): Naphthalene	209.06.9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Accenaphthylene	200-30-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	86 72 7	0.5	marka	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pluorene	85.01.9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	120-12-7	0.5	marka	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Antinacene	206.44.0	0.5	marka	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	120-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	56-55-3	0.5	marka	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	218.01.0	0.5	marka	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Chrysene	210-01-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(b+j)Iluoranthene	205-99-2 205-82-3	0.5	myrky	50.5	50.5	0.00	NO EIIII
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
ES1917585-007	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		ED075(SIM): Chrysone	218-01-9	0.5	ma/ka	<0.5	<0.5	0.00	No Limit

Page	: 4 of 8
Work Order	: ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report	5 <u>.</u>	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP075(SIM)B: Poly	nuclear Aromatic Hydroc	arbons (QC Lot: 2394409) - continued							
ES1917585-007	Anonymous	EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Sum of polycyclic aromatic hydrocarbons	1000	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.00	No Limit
EP080/071: Total F	etroleum Hydrocarbons	(QC Lot: 2394408)							
ES1917585-001	Anonymous	EP071: C15 - C28 Fraction	1200	100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
ES1917585-007	Anonymous	EP071: C15 - C28 Fraction	2 <u>.1111</u>	100	mg/kg	430	400	8.63	No Limit
	or en aleren Roker her sonen b	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 2394444)	and the second sec				1		
ES1917553-001	INTER LAB SPLIT	EP080: C6 - C9 Eraction		10	mg/kg	<10	<10	0.00	No Limit
ES1917585-006	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total F	ecoverable Hydrocarbon	s - NEPM 2013 Fractions (OC Lot: 2394408)		0.46			1	987 (249 130C	1 monuments
ES1917585-001	Anonymous	EP071: >C16 - C34 Eraction		100	ma/ka	<100	<100	0.00	No Limit
	, and grind as	EP071: >C34 - C40 Fraction		100	ma/ka	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	ma/ka	<50	<50	0.00	No Limit
ES1917585-007	Anonymous	EP071: >C16 - C34 Fraction		100	ma/ka	410	390	5.17	No Limit
	1. 10 TO 1. 1. 10 TO 1. 10 TO 1. 10	EP071: >C34 - C40 Fraction		100	ma/ka	<100	<100	0.00	No Limit
		EP071: >C10 - C16 Fraction		50	ma/ka	50	<50	0.00	No Limit
EP080/071: Total B	ecoverable Hydrocarbon	s - NEPM 2013 Fractions (OC Lot: 2394444)			0.0			2800-860.	0.0004.0004
ES1917553-001	INTER LAB SPLIT	EP080: C6 - C10 Eraction	C6 C10	10	ma/ka	<10	<10	0.00	No Limit
ES1917585-006	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	ma/ka	<10	<10	0.00	No Limit
EPORO BTEXN (O	C L ot: 2394444)		00_0.01		, mgring				, (se a)riis
EP000. BTEAN (G	INTED I AD SOUT	ED000 Durante	71 42 2	0.2	malka	-0.2	<0.2	0.00	No Limit
E31917353-001	INTER LAD OFLIT	EP080; Benzene	109.99.2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit
		EP080: Toluene	100-00-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	nigreg	~0.5	NU.0	0.00	NO Entite
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit
ES1917585-006	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit

Page	: 5 of 8
Work Order	: ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Sub-Matrix: SOIL					-	Laboratory	Duplicate (DUP) Report	65	
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EP080: BTEXN (QC	Lot: 2394444) - contin	nued							
ES1917585-006	Anonymous	EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	RPD (%) 0.00 0.00 0.00 0.00 0.00	No Limit
		EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit

Page	: 6 of 8
Work Order	: ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Report Result <5 <10 <1 <50 <1 <2 <2 <2 <2 <2 <5	Spike Concentration 21.7 mg/kg 143 mg/kg 5.63 mg/kg 4.64 mg/kg 43.9 mg/kg	Spike Recovery (%) LCS 99.8 94.3 106 96.0	Recovery I Low 86 85 90	Limits (%) High 126 115 113
Result <5 <10 <1 <50 <1 <2 <2 <2 <2 <5	Concentration 21.7 mg/kg 143 mg/kg 5.63 mg/kg 4.64 mg/kg 43.9 mg/kg	2008 99.8 94.3 106 96.0	Low 86 85 90	High 126 115 113
<5 <10 <1 <50 <1 <2 <2 <2 <2 <2	21.7 mg/kg 143 mg/kg 5.63 mg/kg 4.64 mg/kg 43.9 mg/kg	99.8 94.3 106 96.0	86 85 90	126 115 113
<5 <10 <1 <50 <1 <2 <2 <2 <2 <5	21.7 mg/kg 143 mg/kg 5.63 mg/kg 4.64 mg/kg 43.9 mg/kg	99.8 94.3 106 96.0	86 85 90	126 115 113
<10 <1 <50 <1 <2 <2 <2 <2 <5	143 mg/kg 5.63 mg/kg 4.64 mg/kg 43.9 mg/kg	94.3 106 96.0	85 90	115 113
<1 <50 <1 <2 <2 <2 <5	5.63 mg/kg 4.64 mg/kg 43.9 mg/kg	106 96.0	90	113
<50 <1 <2 <2 <2 <5	 4.64 mg/kg 43.9 mg/kg	 96.0	7/07/200	
<1 <2 <2 <5	4.64 mg/kg 43.9 mg/kg	96.0		2010/02/
<2 <2 <5	43.9 mg/kg	N.7. (2019)	83	113
<2 <5		80.5	76	128
<5	16 mg/kg	96.5	88	120
	32 mg/kg	95.0	86	120
<5	40 mg/kg	99.8	80	114
<5	130 mg/kg	94.7	85	117
<2	55 mg/kg	89.1	87	123
<5	5.37 mg/kg	88.0	75	131
<5	29.6 mg/kg	103	92	122
<5	60.8 mg/kg	103	80	122
<0.1	2.57 mg/kg	79.2	70	105
<0.5	6 mg/kg	115	77	125
<0.5	6 mg/kg	118	72	124
<0.5	6 mg/kg	107	73	127
<0.5	6 mg/kg	114	72	126
<0.5	6 mg/kg	114	75	127
<0.5	6 mg/kg	113	77	127
<0.5	6 mg/kg	118	73	127
<0.5	6 mg/kg	114	74	128
<0.5	6 mg/kg	103	69	123
<0.5	6 mg/kg	96.1	75	127
<0.5	6 mg/kg	91.9	68	116
<0.5	6 ma/ka	85.8	74	126
<0.5	6 mg/kg	107	70	126
<0.5	6 mg/kg	86.0	61	121
<0.5	6 mg/kg	80.1	62	118
	6 mg/kg	02.6	63	121
	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	<0.5 6 mg/kg <0.5	<0.5 6 mg/kg 107 <0.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Page : 7 of 8 Work Order : ES1917553 Client : GEO-ENVIRONMENTAL SOLUTIONS Project : Building 3

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS	5) Report	
			114	Report	Spike	Spike Recovery (%)	Recovery	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons	(QCLot: 2394408)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	96.2	75	129
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	106	77	131
EP071: C29 - C36 Fraction	*****	100	mg/kg	<100	300 mg/kg	96.1	71	129
EP080/071: Total Petroleum Hydrocarbons	(QCLot: 2394444)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	85.8	68	128
EP080/071: Total Recoverable Hydrocarbor	ns - NEPM 2013 Fractions (QCLo	t: 2394408)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	95.5	77	125
EP071: >C16 - C34 Fraction	222	100	mg/kg	<100	525 mg/kg	98.8	74	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	83.8	63	131
EP080/071: Total Recoverable Hydrocarbor	ns - NEPM 2013 Fractions (QCLo	t: 2394444)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	84.5	68	128
EP080: BTEXN (QCLot: 2394444)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	86.7	62	116
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	88.2	67	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	87.4	65	117
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	89.4	66	118
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	88.8	68	120
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	108	63	119

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

lient sample ID			Spike	Colle Deserve (8/)	100000000000000000000000000000000000000	
lient sample ID				SpikeRecovery(%)	Recovery L	.imits (%)
	Method: Compound	CAS Number	Concentration	MS	Low	High
Metals by ICP-AES (QCLot: 23980	67)					
TER LAB SPLIT	EG005T: Arsenic	7440-38-2	50 mg/kg	116	70	130
	EG005T: Cadmium	7440-43-9	50 mg/kg	98.8	70	130
	EG005T: Chromium	7440-47-3	50 mg/kg	89.2	70	130
	EG005T: Copper	7440-50-8	250 mg/kg	98.3	70	130
	EG005T: Lead	7439-92-1	250 mg/kg	105	70	130
	EG005T: Nickel	7440-02-0	50 mg/kg	104	70	130
	EG005T: Zinc	7440-66-6	250 mg/kg	113	70	130
erable Mercury by FIMS (QCLot: 2	398068)					
TER LAB SPLIT	EG035T: Mercury	7439-97-6	5 mg/kg	95.8	70	130
e	Metals by ICP-AES (QCLot: 23980 ER LAB SPLIT rable Mercury by FIMS (QCLot: 2: ER LAB SPLIT	Metals by ICP-AES (QCLot: 2398067) ER LAB SPLIT ER LAB SPLIT EG005T: Cadmium EG005T: Chromium EG005T: Copper EG005T: Lead EG005T: Nickel EG005T: Zinc Table Mercury by FIMS (QCLot: 2398068) ER LAB SPLIT EG035T: Mercury	Metals by ICP-AES (QCLot: 2398067) EG005T: Arsenic 7440-38-2 ER LAB SPLIT EG005T: Cadmium 7440-43-9 EG005T: Chromium 7440-47-3 EG005T: Chromium 7440-50-8 EG005T: Lead 7439-92-1 EG005T: Nickel 7440-66-6 rable Mercury by FIMS (QCLot: 2398068) EG035T: Mercury ER LAB SPLIT EG035T: Mercury 7439-97-6	ER LAB SPLIT EG005T: Arsenic 7440-38-2 50 mg/kg EG005T: Cadmium 7440-43-9 50 mg/kg EG005T: Chromium 7440-47-3 50 mg/kg EG005T: Chromium 7440-47-3 50 mg/kg EG005T: Chromium 7440-50-8 250 mg/kg EG005T: Lead 7439-92-1 250 mg/kg EG005T: Nickel 7440-66-6 250 mg/kg EG005T: Zinc 7440-66-6 250 mg/kg rable Mercury by FIMS (QCLot: 2398068) EG035T: Mercury 7439-97-6 5 mg/kg	ER LAB SPLIT EG005T: Arsenic 7440-38-2 50 mg/kg 116 EG005T: Cadmium 7440-43-9 50 mg/kg 98.8 98.8 EG005T: Cadmium 7440-43-9 50 mg/kg 98.8 98.3 EG005T: Chromium 7440-50-8 250 mg/kg 98.3 98.3 EG005T: Lead 7439-92-1 250 mg/kg 105 105 EG005T: Nickel 7440-62-0 50 mg/kg 104 105 EG005T: Zinc 7440-66-6 250 mg/kg 113 105 rable Mercury by FIMS (QCLot: 2398068) EG035T: Mercury 7439-97-6 5 mg/kg 95.8	Betals by ICP-AES (QCLot: 2398067) EG005T: Arsenic 7440-38-2 50 mg/kg 116 70 ER LAB SPLIT EG005T: Cadmium 7440-43-9 50 mg/kg 98.8 70 EG005T: Cadmium 7440-43-9 50 mg/kg 98.8 70 EG005T: Chromium 7440-47-3 50 mg/kg 98.3 70 EG005T: Copper 7440-50-8 250 mg/kg 98.3 70 EG005T: Lead 7439-92-1 250 mg/kg 105 70 EG005T: Nickel 7440-02-0 50 mg/kg 104 70 EG005T: Zinc 7440-66-6 250 mg/kg 113 70 rable Mercury by FIMS (QCLot: 2398068) ER LAB SPLIT EG035T: Mercury 7439-97-6 5 mg/kg 95.8 70

Page	: 8 of 8
Work Order	: ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Sub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery I	limits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCI	_ot: 2394409)					
ES1917585-001	Anonymous	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	99.1	70	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	106	70	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2394	1408)					
ES1917585-001	Anonymous	EP071: C10 - C14 Fraction		523 mg/kg	104	73	137
		EP071: C15 - C28 Fraction		2319 mg/kg	114	53	131
		EP071: C29 - C36 Fraction		1714 mg/kg	113	52	132
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 2394	1444)					
ES1917553-001	INTER LAB SPLIT	EP080: C6 - C9 Fraction		32.5 mg/kg	128	70	130
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCLot: 2394408)					
ES1917585-001	Anonymous	EP071: >C10 - C16 Fraction		860 mg/kg	99.8	73	137
		EP071: >C16 - C34 Fraction	1 <u>0007</u> 8	3223 mg/kg	124	53	131
		EP071: >C34 - C40 Fraction		1058 mg/kg	112	52	132
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCLot: 2394444)					
ES1917553-001	INTER LAB SPLIT	EP080: C6 - C10 Fraction	C6_C10	37.5 mg/kg	126	70	130
EP080: BTEXN (Q	CLot: 2394444)						and the second
ES1917553-001	INTER LAB SPLIT	EP080: Benzene	71-43-2	2.5 mg/kg	113	70	130
		EP080: Toluene	108-88-3	2.5 mg/kg	116	70	130
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	114	70	130
		EP080: meta- & para-Xylene	108-38-3 106-42-3	2.5 mg/kg	109	70	130
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	112	70	130
		EP080: Naphthalene	91-20-3	2.5 mg/kg	94.2	70	130

	QA/QC Compliance Assessment to assist with Quality Review							
Work Order	ES1917553	Page	: 1 of 4					
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	: Environmental Division Sydney					
Contact	: DR JOHN PAUL CUMMING	Telephone	: +6138549 9630					
Project	: Building 3	Date Samples Received	: 06-Jun-2019					
Site		Issue Date	: 14-Jun-2019					
Sampler	: JPC	No. of samples received	:1					
Order number	(1)	No. of samples analysed	: 1					

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- NO Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

<u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

<u>NO</u> Quality Control Sample Frequency Outliers exist.

Page	: 2 of 4
Work Order	; ES1917553
Client	GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	n: 🛎 = Holding time	breach ; 🗹 = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) INTER LAB SPLIT	31-May-2019				11-Jun-2019	14-Jun-2019	-
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) INTER LAB SPLIT	31-May-2019	11-Jun-2019	27-Nov-2019	1	11-Jun-2019	27-Nov-2019	1
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) INTER LAB SPLIT	31-May-2019	11-Jun-2019	28-Jun-2019	1	12-Jun-2019	28-Jun-2019	1
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) INTER LAB SPLIT	31-May-2019	11-Jun-2019	14-Jun-2019	1	12-Jun-2019	21-Jul-2019	1
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071) INTER LAB SPLIT	31-May-2019	11-Jun-2019	14-Jun-2019	1	12-Jun-2019	21-Jul-2019	1
Soil Glass Jar - Unpreserved (EP080) INTER LAB SPLIT	31-May-2019	11-Jun-2019	14-Jun-2019	1	13-Jun-2019	14-Jun-2019	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) INTER LAB SPLIT	31-May-2019	11-Jun-2019	14-Jun-2019	1	12-Jun-2019	21-Jul-2019	1
Soil Glass Jar - Unpreserved (EP080) INTER LAB SPLIT	31-May-2019	11-Jun-2019	14-Jun-2019	1	13-Jun-2019	14-Jun-2019	1
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) INTER LAB SPLIT	31-May-2019	11-Jun-2019	14-Jun-2019	1	13-Jun-2019	14-Jun-2019	1

Page	: 3 of 4
Work Order	: ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation: × = Quality Control frequency not within specification ; ✓ = Quality Control frequency within specification.					
Quality Control Sample Type		(Count		Rate (%)		Quality Control Specification		
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation			
Laboratory Duplicates (DUP)									
Moisture Content	EA055	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
PAH/Phenols (SIM)	EP075(SIM)	2	16	12.50	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	1	NEPM 2013 B3 & ALS QC Standard		
Laboratory Control Samples (LCS)									
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Method Blanks (MB)									
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Matrix Spikes (MS)									
PAH/Phenols (SIM)	EP075(SIM)	1	16	6.25	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH - Semivolatile Fraction	EP071	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	1	NEPM 2013 B3 & ALS QC Standard		

Page	: 4 of 4
Work Order	: ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	· Building 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM amended 2013.
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270D. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 502 and 507)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM amended 2013.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

	QUALITY	CONTROL REPORT	
Work Order	EM1909096	Page	≈ 1 of 3
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	: Environmental Division Melbourne
Contact	SARAH JOYCE	Contact	: Shirley LeCornu
Address	29 KIRKSWAY PLACE BATTERY POINT TASMANIA, AUSTRALIA 7004	Address	4 Westall Rd Springvale VIC Australia 3171
Telephone	+61 03 6223 1839	Telephone	: +6138549 9630
Project	Building 3	Date Samples Received	: 04-Jun-2019
Order number		Date Analysis Commenced	: 14-Jun-2019
C-O-C number	<u></u>	Issue Date	: 20-Jun-2019
Sampler			Hac-MRA NATA
Site			
Quote number	: EN/222		Accreditation No. 82
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	3		ISO/IEC 17025 - Testin

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

RIGHT SOLUTIONS RIGHT PARTNER

 Page
 : 2 of 3

 Work Order
 : EM1909096

 Client
 : GEO-ENVIRONMENTAL SOLUTIONS

 Project
 : Building 3

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key : Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting RPD = Relative Percentage Difference # = Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (Dried @ 105-110)°C) (QC Lot: 2406706)							
EM1908427-052	Anonymous	EA055: Moisture Content		0.1	%	17.8	17.8	0.00	0% - 50%
EM1908427-086	Anonymous	EA055: Moisture Content		0,1	%	13.8	14.5	5.08	0% - 50%
EK026SF: Total CN	by Segmented Flow A	nalyser (QC Lot: 2406082)							
EM1909096-001	BH01 1.4-1.5	EK026SF: Total Cyanide	57-12-5	1	mg/kg	<1	<1	0.00	No Limit
EP066: Polychlorin	ated Biphenyls (PCB)	QC Lot: 2404824)							
EM1909096-001	BH01 1.4-1.5	EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1	0.00	No Limit
Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EG005(ED093)C: Le	achable Metals by ICP.	AES (QC Lot: 2416387)							
EM1909096-002	BH07 0.5-0.6	EG005C: Arsenic	7440-38-2	0.1	mg/L	<0.1	<0.1	0.00	No Limit
Contraction of the second s	Contractions in contraction of the	EG005C: Copper	7440-50-8	0.1	mg/L	0.3	0.3	0.00	No Limit
EM1909145-005	Anonymous	EG005C: Arsenic	7440-38-2	0.1	mg/L	<0.1	<0.1	0.00	No Limit
		EG005C: Copper	7440-50-8	0.1	mg/L	<0.1	<0.1	0.00	No Limit

Page	: 3 of 3
Work Order	: EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
	: SOIL compound CAS Number LOR Unit : Total CN by Segmented Flow Analyser (QCLot: 2406082) Total Cyanide 57-12-5 1 mg/kg olychlorinated Biphenyls (PCB) (QCLot: 2404824) tal Polychlorinated biphenyls 0.1 mg/kg : WATER compound CAS Number LOR Unit		Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EK026SF: Total CN by Segmented Flow Analyse	er (QCLot: 2406082)								
EK026SF: Total Cyanide	57-12-5	1	mg/kg	<1	20 mg/kg	100	70	130	
EP066: Polychlorinated Biphenyls (PCB) (QCLo	t: 2404824)								
EP066: Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	1.27 mg/kg	95.5	63	115	
Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC:	S) Report		
				Report	Spike	Spike Recovery (%) Rec		overy Limits (%)	
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EG005(ED093)C: Leachable Metals by ICPAES (QCLot: 2416387)								
EG005C: Arsenic	7440-38-2	0.1	mg/L	<0.1	1 mg/L	102	89	119	
EG005C: Copper	7440-50-8	0.1	mg/L	<0.1	1 mg/L	97.7	88	115	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
01				Spike	SpikeRecovery(%)	Recovery l	imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EK026SF: Total C	N by Segmented Flow Analyser (QCLot: 2406082)						
EM1909096-002	BH07 0.5-0.6	EK026SF: Total Cyanide	57-12-5	20 mg/kg	79.5	70	130
EP066: Polychlori	nated Biphenyls (PCB) (QCLot: 2404824)						
EM1909096-002	BH07 0.5-0.6	EP066: Total Polychlorinated biphenyls	<u> </u>	1.27 mg/kg	94.6	44	144
Sub-Matrix: WATER				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	.imits (%)
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)C: I	eachable Metals by ICPAES (QCLot: 2416387)						
EM1909096-003	BH03 0.5-0.6	EG005C: Arsenic	7440-38-2	1 mg/L	110	88	124
		EG005C: Copper	7440-50-8	1 mg/L	103	91	121

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	EM1909096	Page	: 1 of 4		
Client	: GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	: Environmental Division Melbourne		
Contact	: SARAH JOYCE	Telephone	: +6138549 9630		
Project	: Building 3	Date Samples Received	: 04-Jun-2019		
Site		Issue Date	: 20-Jun-2019		
Sampler		No. of samples received	o 3		
Order number		No. of samples analysed	: 3		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- NO Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

<u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

<u>NO</u> Quality Control Sample Frequency Outliers exist.

RIGHT SOLUTIONS RIGHT PARTNER

Page	: 2 of 4
Work Order	; EM1909096
Client	GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL						Evaluation	: × = Holding time	breach ; 🖌 = Withi	n holding time.
Method		Sample Date	Extraction / Preparation			Analysis			
Container / Client Sample ID(s)			- C	Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)									
Soil Glass Jar - Unpreserved (EA055) BH01 1.4-1.5,	BH07 0.5-0.6	31	I-May-2019			Canala:	14-Jun-2019	14-Jun-2019	1
EK026SF: Total CN by Segmented Flow Analyser									
Soil Glass Jar - Unpreserved (EK026SF) BH01 1.4-1.5,	BH07 0.5-0.6	31	I-May-2019	14-Jun-2019	14-Jun-2019	5	17-Jun-2019	28-Jun-2019	1
EN33: TCLP Leach									
Non-Volatile Leach: 180 day HT (e.g. PFAS, metals ex.H BH07 0.5-0.6,	g) (EN33a) BH03 0.5-0.6	31	I-May-2019	17-Jun-2019	27-Nov-2019	1	100000		
EP066: Polychlorinated Biphenyls (PCB)									
Soil Glass Jar - Unpreserved (EP066) BH01 1.4-1.5,	BH07 0.5-0.6	31	I-May-2019	14-Jun-2019	14-Jun-2019	5	14-Jun-2019	24-Jul-2019	1
Matrix: WATER						Evaluation	: × = Holding time	breach ; 🖌 = Withi	n holding time.
Method	A REAL PROPERTY OF THE REAL PR	S	ample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)				Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG005(ED093)C: Leachable Metals by ICPAES									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG005C) BH07 0.5-0.6,	BH03 0.5-0.6	17	7-Jun-2019	20-Jun-2019	14-Dec-2019	1	20-Jun-2019	14-Dec-2019	1

Page	: 3 of 4
Work Order	: EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	: Building 3

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; 🖌 = Quality Control frequency within specific
Quality Control Sample Type		C	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	2	50.00	10.00	1	NEPM 2013 B3 & ALS QC Standard
_aboratory Control Samples (LCS)							
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Cyanide by Segmented Flow Analyser	EK026SF	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Fotal Cyanide by Segmented Flow Analyser	EK026SF	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Polychlorinated Biphenyls (PCB)	EP066	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
Total Cyanide by Segmented Flow Analyser	EK026SF	1	2	50.00	5.00	1	NEPM 2013 B3 & ALS QC Standard
fatrix: WATER				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; 🗹 = Quality Control frequency within specific
Quality Control Sample Type		C	Count		Rate (%)		Quality Control Specification
Analytical Methods	Method	oc	Regular	Actual	Expected	Evaluation	
_aboratory Duplicates (DUP)							
Leachable Metals by ICPAES	EG005C	2	13	15.38	10.00	1	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Leachable Metals by ICPAES	EG005C	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Leachable Metals by ICPAES	EG005C	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Leachable Metals by ICPAES	EG005C	1	13	7.69	5.00	1	NEPM 2013 B3 & ALS QC Standard

Page	: 4 of 4
Work Order	; EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	· Building 3

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Leachable Metals by ICPAES	EG005C	SOIL	In house: referenced to APHA 3120; USEPA SW 846 - 6010: The ICPAES technique ionises leachate sample atoms emitting a characteristic spectrum. This spectrum is then compared against matrix matched standards for quantification. This method is compliant with NEPM (2013) Schedule B(3)
Total Cyanide by Segmented Flow Analyser	EK026SF	SOIL	In house: Referenced to APHA 4500-CN C / ASTM D7511. Caustic leachates of soil samples are introduced into an automated segmented flow analyser. Complex bound cyanide is decomposed in a continuously flowing stream, at a pH of 3.8, by the effect of UV light. A UV-B lamp (312 nm) and a decomposition spiral of borosilicate glass are used to filter out UV light with a wavelength of less than 290 nm thus preventing the conversion of thiocyanate into cyanide. The hydrogen cyanide present at a pH of 3.8 is separated by gas dialysis. The hydrogen cyanide is then determined photometrically, based on the reaction of cyanide with chloramine-T to form cyanogen chloride. This then reacts with 4-pyridine carboxylic acid and 1,3-dimethylbarbituric acid to give a red colour which is measured at 600 nm. This method is compliant with NEPM (2013) Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	SOIL	In house: Referenced to USEPA SW 846 - 8270D Extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM (2013) Schedule B(3) (Method 504)
Preparation Methods	Method	Matrix	Method Descriptions
NaOH leach for CN in Soils	CN-PR	SOIL	In house: APHA 4500 CN. Samples are extracted by end-over-end tumbling with NaOH.
Digestion for Total Recoverable Metals in TCLP Leachate	EN25C	SOIL	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM (2013) Schedule B(3)
TCLP for Non & Semivolatile Analytes	EN33a	SOIL	In house QWI-EN/33 referenced to USEPA SW846-1311: The TCLP procedure is designed to determine the mobility of both organic and inorganic analytes present in wastes. The standard TCLP leach is for non-volatile and Semivolatile test parameters.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Appendix 11 Analytical Results - Certificate of Analysis

	CERTIFIC	CATE OF ANALYSIS	
Work Order	EM1908628	Page	: 1 of 18
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	Environmental Division Melbourne
Contact	SARAH JOYCE	Contact	Shirley LeComu
Address	29 KIRKSWAY PLACE BATTERY POINT TASMANIA, AUSTRALIA 7004	Address	4 Westall Rd Springvale VIC Australia 3171
Telephone	+61 03 6223 1839	Telephone	+6138549 9630
Project	Building 3	Date Samples Received	04-Jun-2019 09:35
Order number	1	Date Analysis Commenced	05-Jun-2019
G-O-C number	and a second sec	Issue Date	12-Jun-2019 16:56
Sampler	: JOHN PAUL CUMMING		Hac-MRA NATA
Site	1		
Quote number	EN/222		"Marchalander Areas and
No. of samples received	: 18		Acceedited for compliance with
No. of samples analysed	: 18		ISO/IEC 17025 - Testing

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically	signed by the authorized s	signatories below. Electronic signing is carried out i	in compliance with procedures specified in 21 CFR Part 11.
and the second of the second s	and the set of the set	and the second	

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

RIGHT SOLUTIONS | RIGHT PARTNER

Page	: 2 of 18
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Particular sample EM-1908628-005 shows minor BTEX hits. Confirmed by re-analysis.

Page	: 3 of 18
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Client sample ID		BH01 0.5-0.6	BH01 1.4-1.5	BH02 0.5-0.6	BH02 1.4-1.5	BH03 0.5-0.6
Client sampling date / time				31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00
Compound	CAS Number	LOR	Unit	EM1908628-001	EM1908628-002	EM1908628-003	EM1908628-004	EM1908628-005
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M	CaCl extract			and and a second se	an and a second second	A		
pH (CaCl2)		0.1	pH Unit	7.7				
EA055: Moisture Content (Dri	ed @ 105-110°C)			and the second				
Moisture Content		1.0	%	18.8	44.2	9.7	41.6	19.0
EG005(ED093)T: Total Metals	by ICP-AES							
Arsenic	7440-38-2	5	mg/kg	18	8	13	10	307
Barium	7440-39-3	10	mg/kg	240	80	160	40	580
Beryllium	7440-41-7	1	mg/kg	<1	2	<1	2	<1
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Cadmium	7440-43-9	1	mg/kg	4	<1	2	<1	2
Chromium	7440-47-3	2	mg/kg	65	65	39	64	38
Cobalt	7440-48-4	2	mg/kg	12	16	10	7	10
Copper	7440-50-8	5	mg/kg	411	46	1850	19	379
Lead	7439-92-1	5	mg/kg	228	23	167	11	550
Manganese	7439-96-5	5	mg/kg	377	176	622	81	462
Nickel	7440-02-0	2	mg/kg	47	68	45	25	42
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	5	mg/kg	40	53	20	78	29
Zinc	7440-66-6	5	mg/kg	283	77	345	49	436
EG035T: Total Recoverable M	Aercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	0.2
EP075/SIM)B: Polynuclear Are	omatic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0,5	<0.5	<0.5	0.8
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	0.7
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page	: 4 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Analytical Results

Sub-Matrix: SOIL	Client sample ID Client sampling date / time			BH01 0.5-0.6 31-May-2019 00:00	BH01 1.4-1.5 31-May-2019 00:00	BH02 0.5-0.6 31-May-2019 00:00	BH02 1.4-1.5 31-May-2019 00:00	BH03 0.5-0.6 31-May-2019 00:00
Compound	CAS Number	LOR	Unit	EM1908628-001	EM1908628-002	EM1908628-003	EM1908628-004	EM1908628-005
			0.540150	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Conti	nued			an analysis -	An anna an	1	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons	2002	0.5	mg/kg	<0.5	<0,5	<0.5	<0.5	1.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
A Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	1170	1100	630	<100	390
C29 - C36 Fraction		100	mg/kg	710	750	340	<100	300
^ C10 - C36 Fraction (sum)	1000	50	mg/kg	1880	1850	970	<50	690
EP080/071: Total Recoverable Hydroca	thons - NEPM 201	3 Eractio	ns					
C6 - C10 Fraction	C6 C10	10	ma/ka	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	ma/ka	<10	<10	<10	<10	<10
(F1)					-23428///	300,002	0403011	424083011
>C10 - C16 Fraction	02220	50	mg/kg	<50	110	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	1620	1540	840	<100	580
>C34 - C40 Fraction		100	mg/kg	280	320	130	<100	140
^ >C10 - C40 Fraction (sum)		50	mg/kg	1900	1970	970	<50	720
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	110	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	0.3
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0,5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	0.3
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Sur	ogates							
Phenol-d6	13127-88-3	0.5	%	69.6	96.8	71.9	92.5	81.8

Page	: 5 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)	trix: SOIL Client sample ID		ant sample ID	BH01 0.5-0.6	BH01 1.4-1.5	BH02 0.5-0.6	BH02 1.4-1.5	BH03 0.5-0.6
10 32	Clie	ent samplir	ng date / time	31-May-2019 00:00 EM1908628-001 Result	31-May-2019 00:00 EM1908628-002 Result	31-May-2019 00:00 EM1908628-003 Result	31-May-2019 00:00 EM1908628-004 Result	31-May-2019 00:00 EM1908628-005 Result
Compound	CAS Number	LOR	Unit					
2-Chlorophenol-D4	93951-73-6	0.5	%	68.3	97.6	71.0	93.7	81.4
2.4.6-Tribromophenol	118-79-6	0.5	%	45.1	93.5	50.9	86.1	67.3
EP075(SIM)T: PAH Surrogates			_					
2-Fluorobiphenyl	321-60-8	0.5	%	104	108	104	103	107
Anthracene-d10	1719-06-8	0.5	%	103	120	107	115	109
4-Terphenyl-d14	1718-51-0	0.5	%	105	118	105	110	108
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	124	60.8	71.4	63.9	80.2
Toluene-D8	2037-26-5	0.2	%	107	57.2	63.8	60.8	74.8
4-Bromofluorobenzene	460-00-4	0.2	%	123	72.0	76.6	82.2	81.2
Page	: 6 of 18							
------------	--------------------------------							
Work Order	: EM1908628							
Client	: GEO-ENVIRONMENTAL SOLUTIONS							
Project	 Building 3 							

Sub-Matrix: SOIL		Clie	ant sample ID	BH03 1.4-1.5	BH04 0.5-0.6	BH04 1.4-1.5	BH05 0.5-0.6	BH05 1.4-1.5
	Cli	Client sampling date / time		31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00
Compound	CAS Number	LOR	Unit	EM1908628-006	EM1908628-007	EM1908628-008	EM1908628-009	EM1908628-010
			Construction of the second sec	Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M	CaCl extract	_			de consistente de la			0
pH (CaCl2)		0.1	pH Unit	5.6				(
EA055: Moisture Content (Dri	ed @ 105-110°C)			and the second sec				
Moisture Content		1.0	%	40.3	16.7	42.5	14.3	39.8
EG005(ED093)T: Total Metals	by ICP-AES				L. Clark		A	
Arsenic	7440-38-2	5	mg/kg	11	18	10	31	8
Barium	7440-39-3	10	mg/kg	20	50	20	50	20
Beryllium	7440-41-7	1	mg/kg	2	<1	2	<1	2
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	58	7	63	10	76
Cobalt	7440-48-4	2	mg/kg	11	4	8	5	11
Copper	7440-50-8	5	mg/kg	23	86	19	159	16
Lead	7439-92-1	5	mg/kg	15	119	10	229	9
Manganese	7439-96-5	5	mg/kg	69	187	68	147	95
Nickel	7440-02-0	2	mg/kg	33	10	25	16	31
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	5	mg/kg	64	12	69	17	66
Zinc	7440-66-6	5	mg/kg	57	136	48	206	51
EG035T: Total Recoverable M	Aercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	0.2	<0.1
EP075/SIM)B: Polynuclear Ar	omatic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0,5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page	: 7 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL (Matrix: SOIL)		Cli	ent sample ID	BH03 1.4-1.5	BH04 0.5-0.6	BH04 1.4-1.5	BH05 0.5-0.6	BH05 1.4-1.5
	Clie	ent sampli	ng date / time	31-May-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1908628-006	EM1908628-007	EM1908628-008	EM1908628-009	EM1908628-010
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Conti	nued		100000	1 (DAVIO)			6
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0,5	<0.5
^ Sum of polycyclic aromatic hydrocarbons	1222	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)	(1 	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbo	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	130	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	130	<50
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0,5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
[^] Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0,5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Sur	rogates							64
Phenol-d6	13127-88-3	0.5	%	94.6	63.5	95.0	75.8	94.8

Page	: 8 of 18
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL (Matrix: SOIL)	atrix: SOIL Client sample x: SOIL)		ant sample ID	BH03 1.4-1.5	BH04 0.5-0.6	BH04 1.4-1.5	BH05 0.5-0.6	BH05 1.4-1.5
176 32 1	Clie	ent samplir	ng date / time	31-May-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1908628-006	EM1908628-007	EM1908628-008	EM1908628-009	EM1908628-010
				Result	Result	Result	Result	Result
EP075(SIM)S: Phenolic Compound Sur	rrogates - Continued							
2-Chlorophenol-D4	93951-73-6	0.5	%	95.5	65.0	96.3	77.0	95.8
2.4.6-Tribromophenol	118-79-6	0.5	%	93.8	42.6	82.3	56.8	83.9
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	106	103	103	110	106
Anthracene-d10	1719-06-8	0.5	%	118	101	120	109	119
4-Terphenyl-d14	1718-51-0	0.5	%	114	104	111	109	112
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	67.4	70.1	60.6	67.7	65.3
Toluene-D8	2037-26-5	0.2	%	65.9	64.0	59.2	62.6	64.8
4-Bromofluorobenzene	460-00-4	0.2	%	80.9	75.4	78.0	76.2	79.8

Page	: 9 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL		Clie	ent sample ID	BH06 0.5-0.6	BH06 1.4-1.5	BH07 0.5-0.6	BH07 1.4-1.5	BH08 0.5-0.6
	Clic	ent sampli	ng date / time	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00
Compound	CAS Number	LOR	Unit	EM1908628-011	EM1908628-012	EM1908628-013	EM1908628-014	EM1908628-015
				Result	Result	Result	Result	Result
EA001: pH in soil using 0.01M (CaCl extract				an and a second s	An and a second s		0 00000
pH (CaCl2)		0.1	pH Unit	6.3	5.4	(****		
EA055: Moisture Content (Dried	1 @ 105-110°C)			and the second sec		A.4		
Moisture Content		1.0	%	19.8	41.6	27.4	39.5	18.6
EG005(ED093)T: Total Metals b	V ICP-AES					Na	A	
Arsenic	7440-38-2	5	mg/kg	24	8	48	9	40
Barium	7440-39-3	10	mg/kg	80	20	160	20	60
Beryllium	7440-41-7	1	mg/kg	<1	2	<1	2	<1
Boron	7440-42-8	50	mg/kg	<50	<50	<50	<50	<50
Cadmium	7440-43-9	1	mg/kg	<1	<1	1	<1	<1
Chromium	7440-47-3	2	mg/kg	19	64	16	66	6
Cobalt	7440-48-4	2	mg/kg	5	8	9	19	4
Copper	7440-50-8	5	mg/kg	166	18	2280	22	62
Lead	7439-92-1	5	mg/kg	211	11	364	11	74
Manganese	7439-96-5	5	mg/kg	205	64	461	100	120
Nickel	7440-02-0	2	mg/kg	21	32	35	50	11
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5
Vanadium	7440-62-2	5	mg/kg	46	69	19	60	11
Zinc	7440-66-6	5	mg/kg	125	52	353	65	63
EG035T: Total Recoverable Me	ercury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	2.3	<0.1	<0.1
EP075/SIM)B: Polynuclear Aron	natic Hydrocarbons							
Naphthalene	91-20-3	0.5	ma/ka	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	ma/ka	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	ma/ka	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.9	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	1.0	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	0.6	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/ka	<0.5	<0,5	<0.5	<0,5	<0.5

Page	: 10 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL		Clie	ent sample ID	BH06 0.5-0.6	BH06 1.4-1.5	BH07 0.5-0.6	BH07 1.4-1.5	BH08 0.5-0.6
	Cli	ent sampli	ng date / time	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00
Compound	CAS Number	LOR	Unit	EM1908628-011	EM1908628-012	EM1908628-013	EM1908628-014	EM1908628-015
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Conti	nued			and an and a second	A		
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	3.0	<0.5	<0.5
[^] Benzo(a)pyrene TEQ (zero)	:	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
A Benzo(a)pyrene TEQ (half LOR)	1	0.5	mg/kg	0.6	0.6	0.7	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarbo	ons		_					
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	290	<100	610	<100	<100
C29 - C36 Fraction		100	mg/kg	290	<100	520	<100	110
^ C10 - C36 Fraction (sum)		50	mg/kg	580	<50	1130	<50	110
EP080/071: Total Recoverable Hydrocar	bons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								5. (2000) 11
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	480	<100	980	<100	150
>C34 - C40 Fraction		100	mg/kg	140	<100	210	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	620	<50	1190	<50	150
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50	<50	<50	<50
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX	()	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0,5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Surr	ogates							
Phenol-d6	13127-88-3	0.5	%	66.6	97.2	74.4	96.6	70.1

Page	: 11 of 18
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL (Matrix: SOIL)	SOIL Client sample ID IL)		BH06 0.5-0.6	BH06 1.4-1.5	BH07 0.5-0.6	BH07 1.4-1.5	BH08 0.5-0.6	
10 - 20 -	Cli	ent samplir	ng date / time	31-May-2019 00:00				
Compound	CAS Number	LOR	Unit	EM1908628-011	EM1908628-012	EM1908628-013	EM1908628-014	EM1908628-015
				Result	Result	Result	Result	Result
EP075(SIM)S: Phenolic Compound Sur	rogates - Continued							
2-Chlorophenol-D4	93951-73-6	0.5	%	69.6	98.7	76.9	97.9	70.7
2.4.6-Tribromophenol	118-79-6	0.5	%	52.8	93.3	64.3	91.4	55.6
EP075(SIM)T: PAH Surrogates			_					
2-Fluorobiphenyl	321-60-8	0.5	%	104	108	107	109	103
Anthracene-d10	1719-06-8	0.5	%	106	122	115	124	104
4-Terphenyl-d14	1718-51-0	0.5	%	108	116	112	116	105
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	68.4	71.5	65.0	70.1	66.4
Toluene-D8	2037-26-5	0.2	%	65.0	66.4	59.6	67.0	61.7
4-Bromofluorobenzene	460-00-4	0.2	%	76.2	81.1	72.9	86.9	74.3

Page	: 12 of 18
Work Order	; EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL Client sample ID				BH08 1.4-1.5	Duplicate	<u> 9970</u>	12202	
	Cli	ent sampli	ng date / time	31-May-2019 00:00	31-May-2019 00:00	10000		
Compound	CAS Number	LOR	Unit	EM1908628-016	EM1908628-017	*******		
				Result	Result	<u></u>		2000 CONTRACTOR OF
EA055: Moisture Content (Drie	d @ 105-110°C)			Alexandra.	A second star			
Moisture Content		1.0	%	40.3	15.2			
EG005(ED093)T: Total Metals b	V ICP-AES			and the second division of the local divisio				
Arsenic	7440-38-2	5	mg/kg	12	29		1	
Barium	7440-39-3	10	mg/kg	30	100			
Beryllium	7440-41-7	1	mg/kg	1	<1		((
Boron	7440-42-8	50	mg/kg	<50	<50		7. <u>9890</u>	V-222
Cadmium	7440-43-9	1	mg/kg	<1	<1			
Chromium	7440-47-3	2	mg/kg	66	16	(1111)		7 <u>9409</u>
Cobalt	7440-48-4	2	mg/kg	8	7			
Copper	7440-50-8	5	mg/kg	14	259	****		
Lead	7439-92-1	5	mg/kg	11	238	(1 <u>4847</u> 8	7.000	24 <u>242</u>
Manganese	7439-96-5	5	mg/kg	74	227			
Nickel	7440-02-0	2	mg/kg	25	27		2.000	2000
Selenium	7782-49-2	5	mg/kg	<5	<5			1
Vanadium	7440-62-2	5	mg/kg	82	21	****		
Zinc	7440-66-6	5	mg/kg	50	158	·	9100	Same
EG035T: Total Recoverable M	ercurv by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	0.2	1202	1 1 222	N2222
EP075(SIM)B: Polynuclear Aro	matic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5			1000
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	(
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5			
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5		3.000	3.000
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5		()	10000
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5			
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5			
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5		2 <u>000</u>	2 <u></u>
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5			
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5		() () () () () () () () () () () () () (1.4444
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5		1000	10 <u>1117</u>
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5		((1000
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0,5			1
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5		Li tera I	1.000
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5			()

Page	: 13 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL		Cli	ent sample ID	BH08 1.4-1.5	Duplicate	Same	1	()
Version of the f	Clin			31-May-2019 00:00	31-May-2019 00:00	19110		
Compound	CAS Number	LOR	Unit	EM1908628-016	EM1908628-017	********		
and the second			Second States	Result	Result	<u>410</u>		
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons - Cont	inued		- AMORTONIA	and the second se			
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5		() 	
^ Sum of polycyclic aromatic hydrocarbon	s	0.5	mg/kg	<0.5	<0.5		(<u>1111</u>	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	(****	5 	1.000
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	1	5 <u>258</u>	1
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	(****)	S. Carlos	1.000
EP080/071: Total Petroleum Hydrocarb	oons				de la companya de la			
C6 - C9 Fraction		10	mg/kg	<10	<10			
C10 - C14 Fraction		50	mg/kg	<50	<50			
C15 - C28 Fraction		100	mg/kg	<100	380			
C29 - C36 Fraction		100	mg/kg	<100	380	****	7, 222	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	760	(1 <u>222</u> 8	2 <u>1-127</u>	7.222
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	1111	1	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10			
>C10 - C16 Fraction		50	mg/kg	<50	<50	(<u>1995</u>)	1 <u></u>	
>C16 - C34 Fraction	-	100	mg/kg	<100	620		5 ****	
>C34 - C40 Fraction		100	mg/kg	<100	190		8202	8.444
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	810	(.)		1
* >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50	<50			
EP080: BTEXN		-						
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2		1	1
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5		1.0000	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	(*****)		
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5		(<u>1117</u>	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5			(1000)
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	2000		
^ Total Xylenes	() (0.5	mg/kg	<0.5	<0.5	(111) (1	12,000
Naphthalene	91-20-3	1	mg/kg	<1	<1	(*****)		
EP075(SIM)S: Phenolic Compound Su	rrogates			and the second				
Phenol-d6	13127-88-3	0.5	%	93.2	64.8		(1 <u>2000</u>	() <u></u>
2-Chlorophenol-D4	93951-73-6	0.5	%	93.1	69.8			
2.4.6-Tribromophenol	118-79-6	0.5	%	87.0	60.1	(Anna)	1	Titles

Page	: 14 of 18
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			BH08 1.4-1.5	Duplicate	Sam		0.0000
10 - 20 1	Clie	ent samplin	g date / time	31-May-2019 00:00	31-May-2019 00:00	(<u>4114</u>)		
Compound	CAS Number	LOR	Unit	EM1908628-016	EM1908628-017			
-17				Result	Result	402		
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	103	105	· • • • •		
Anthracene-d10	1719-06-8	0.5	%	123	107			· · · · · · · · · · · · · · · · · · ·
4-Terphenyl-d14	1718-51-0	0.5	%	114	107		- G aras	5
EP080S: TPH(V)/BTEX Surrogates								1.02
1.2-Dichloroethane-D4	17060-07-0	0.2	%	62.9	66.9			
Toluene-D8	2037-26-5	0.2	%	60.1	58.9	1202	18932	Yester
4-Bromofluorobenzene	460-00-4	0.2	%	73.9	68.6			

Page	: 15 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Matrix: WATER Client sample ID			Rinsate		- Sim	1		
10 10	Cli		ng date / time	31-May-2019 00:00		10000		
Compound	CAS Number	LOR	Unit	EM1908628-018	*******			
				Result	222	<u> </u>		
EG020F: Dissolved Metals by ICP-MS						abu		
Arsenic	7440-38-2	0.001	mg/L	<0.001		((
Boron	7440-42-8	0.05	mg/L	<0.05			(<u></u>	
Barium	7440-39-3	0.001	mg/L	<0.001				
Beryllium	7440-41-7	0.001	mg/L	<0.001			5 <u>-55</u>	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001			S. S. S. S.	1.000
Cobalt	7440-48-4	0.001	mg/L	<0.001		(0.000	
Chromium	7440-47-3	0.001	mg/L	<0.001				
Copper	7440-50-8	0.001	mg/L	<0.001	1 100	(Server.	2.000 C
Manganese	7439-96-5	0.001	mg/L	<0.001		(
Nickel	7440-02-0	0.001	mg/L	<0.001	1.000		3/1000	
Lead	7439-92-1	0.001	mg/L	<0.001	****	(
Selenium	7782-49-2	0.01	mg/L	<0.01	1000	N <u>erop</u>	Wints	19 <u>111</u>
Vanadium	7440-62-2	0.01	mg/L	<0.01	****			
Zinc	7440-66-6	0.005	mg/L	<0.005			0.000	
EG035F: Dissolved Mercury by FIMS								
Mercury	7439-97-6	0.0001	mg/L	<0.0001			1	1 Sum
EP075(SIM)B: Polynuclear Aromatic H	lvdrocarbons							
Naphthalene	91-20-3	1.0	µg/L	<1.0	2 202	12025	N <u>2222</u>	1 10000
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	****		5. 5576	2.000
Acenaphthene	83-32-9	1.0	µg/L	<1.0			82032	87.00
Fluorene	86-73-7	1.0	µg/L	<1.0		(7775)	11.0000	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	(
Anthracene	120-12-7	1.0	µg/L	<1.0	1000 C	5 <u>17770</u> 9	0.222	17 <u>2132</u>
Fluoranthene	206-44-0	1.0	µg/L	<1.0				
Pyrene	129-00-0	1.0	µg/L	<1.0			2 <u>005</u>	8222
Benz(a)anthracene	56-55-3	1.0	µg/L	<1.0				
Chrysene	218-01-9	1.0	µg/L	<1.0		(
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0		1	7 <u>000</u>	1
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	****		2	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5		(1111)		
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0				
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0				
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	<u></u>	1222	2.000	2000
Sum of polycyclic aromatic hydrocarbo	15	0.5	µg/L	<0.5			S	

Page	: 16 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: WATER (Matrix: WATER)		Clie	nt sample ID	Rinsate	11 1111 11			
1970 - 197 11	Client sampling date / time			31-May-2019 00:00	222			
Compound	CAS Number	LOR	Unit	EM1908628-018	******		******	******
				Result	222	422		
EP075(SIM)B: Polynuclear Aromatic H	ydrocarbons - Cont	nued						
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5				
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		20	µg/L	<20				(
C10 - C14 Fraction		50	µg/L	<50				
C15 - C28 Fraction		100	µg/L	<100	****	(****		
C29 - C36 Fraction		50	µg/L	<50	200		7. <u>222</u>	1 11
^ C10 - C36 Fraction (sum)		50	µg/L	<50	****		0.0000	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fraction	15					
C6 - C10 Fraction	C6 C10	20	µg/L	<20				3
[^] C6 - C10 Fraction minus BTEX	C6 C10-BTEX	20	µg/L	<20				
(F1)		22.2	2/32/07/2	295				
>C10 - C16 Fraction		100	µg/L	<100			(1.000
>C16 - C34 Fraction		100	µg/L	<100		-	-	-
>C34 - C40 Fraction		100	µg/L	<100			1.000	No.
^ >C10 - C40 Fraction (sum)	يفتندوا	100	µg/L	<100				
^ >C10 - C16 Fraction minus Naphthalene		100	µg/L	<100	1000	(<u>1113</u>)	1000	V. <u>2224</u>
(F2)								
EP080: BTEXN								
Benzene	71-43-2	1	µg/L	<1			1.000	8.000
Toluene	108-88-3	2	µg/L	<2			()	1
Ethylbenzene	100-41-4	2	µg/L	<2				
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2			(5.000
ortho-Xylene	95-47-6	2	µg/L	<2				2
^ Total Xylenes		2	µg/L	<2	1.0000			
^ Sum of BTEX		1	µg/L	<1		· (****) · · ·		
Naphthalene	91-20-3	5	µg/L	<5				2 <u>222</u>
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	1.0	%	27.9				
2-Chlorophenol-D4	93951-73-6	1.0	%	59.5		(1	
2.4.6-Tribromophenol	118-79-6	1.0	%	89.4	1 2023	(<u>1997</u>)	2.44	1000
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	1.0	%	83.6	7.000	1222		
Anthracene-d10	1719-06-8	1.0	%	87.1				
4-Terphenyl-d14	1718-51-0	1.0	%	89.2				

Page	: 17 of 18
Work Order	EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: WATER (Matrix: WATER)	k: WATER Client sample ID VATER)				2 2	 	() ()
	Cli	ent samplir	ng date / time	31-May-2019 00:00		 	
Compound	CAS Number	LOR	Unit	EM1908628-018		 	
			Result		 		
EP080S: TPH(V)/BTEX Surrogates							
1.2-Dichloroethane-D4	17060-07-0	2	%	97.0		 	
Toluene-D8	2037-26-5	2	%	98.4	(<u>111</u>	 	
4-Bromofluorobenzene	460-00-4	2	%	102		 5	5

Page	: 18 of 18
Work Order	: EM1908628
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124
Sub-Matrix: WATER	Recovery Limits (%)		
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	10	46
2-Chlorophenol-D4	93951-73-6	23	104
2.4.6-Tribromophenol	118-79-6	28	130
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	36	114
Anthracene-d10	1719-06-8	51	119
4-Terphenyl-d14	1718-51-0	49	127
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	129
Toluene-D8	2037-26-5	70	125
4-Bromofluorobenzene	460-00-4	71	129

CERTIFICATE OF ANALYSIS

Work Order	ES1917553	Page	1 of 6
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	Environmental Division Sydney
Contact	DR JOHN PAUL CUMMING	Contact	: Shirley LeCornu
Address	29 KIRKSWAY PLACE	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	BATTERY POINT TASMANIA, AUSTRALIA 7004		
Telephone	: +61 03 6223 1839	Telephone	: +6138549 9630
Project	: Building 3	Date Samples Received	: 06-Jun-2019 13:00
Order number	E	Date Analysis Commenced	: 11-Jun-2019
C-O-C number		Issue Date	: 14-Jun-2019 19:45
Sampler	; JPC		HATA NATA
Site	:		
Quote number	: EN/222		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category	
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW	
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW	
Peter Wu		Sydney Inorganics, Smithfield, NSW	

RIGHT SOLUTIONS | RIGHT PARTNER

Page	: 2 of 6
Work Order	ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key : CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(b) uoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.

Page	: 3 of 6
Work Order	ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Jb-Matrix: SOIL Client sample ID Atrix: SOIL)			INTER LAB SPLIT				1. (1 .) (1.) (1.) (1.) (1.) (1.) (1.) (1.) (1	
10	Client sampling date / time			31-May-2019 00:00	2.22			
Compound	CAS Number	LOR	Unit	ES1917553-001	*******			
				Result	222	<u></u>		
EA055: Moisture Content (Dried	I @ 105-110°C)			account)				
Moisture Content		1.0	%	16.6				
EG005(ED093)T: Total Metals b	V ICP-AES						14	
Arsenic	7440-38-2	5	mg/kg	20		****		
Barium	7440-39-3	10	mg/kg	70				
Beryllium	7440-41-7	1	mg/kg	<1				
Boron	7440-42-8	50	mg/kg	<50	<u> 2003</u>		1222	1
Cadmium	7440-43-9	1	mg/kg	<1				
Chromium	7440-47-3	2	mg/kg	18	1.000			
Cobalt	7440-48-4	2	mg/kg	6				
Copper	7440-50-8	5	mg/kg	179		(1. 201	1
Lead	7439-92-1	5	mg/kg	191	2003	(<u>1444</u> 9	21.558	20.568
Manganese	7439-96-5	5	ma/ka	213				
Nickel	7440-02-0	2	mg/kg	25				1 2242
Selenium	7782-49-2	5	ma/ka	<5				
Vanadium	7440-62-2	5	ma/ka	28				
Zinc	7440-66-6	5	ma/ka	112			191111	92222
	roury by EIMS							
Mercury	7439-97-6	0.1	ma/ka	<0.1	2 <u>200</u>	1202	1 222	1 1222
DOZE/CIM/R. Delusiveless Area			3.3					
Nanhthalana	natic Hydrocarbons	0.5	malka	<0.5	1000			0.000
Acononthildene	91-20-3	0.5	mg/kg	<0.5			100000	100000
Acenaphthene	208-90-8	0.5	mg/kg	<0.5		. ::::::::::::::::::::::::::::::::::::	raas	National Instance
Eluerope	83-32-9	0.5	mg/kg	<0.5				
Phononthrops	86-73-7	0.5	mg/kg	<0.5	1.000	(1997). 1997)	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	1.000
Antheorem	85-01-8	0.5	mg/kg	<0.5			2000	2.00000 72.0000
Anthracene	120-12-7	0.5	mg/kg	<0.5	1950			
Fluorantnene	206-44-0	0.5	mg/kg	<0.5		(1999) 	Litera	5.000
Pyrene	129-00-0	0.5	mg/kg	<0.5				
Benz(a)anthracene	56-55-3	0.5	mg/kg	-0.5	1.000			New March
Chrysene	218-01-9	0.5	mg/kg	<0.5	- 1923a	Second Second	- Dave	Date:
Benzo(D+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5				(the second sec
Benzo(K)fluoranthene	207-08-9	0.5	mg/kg	<0.5			((1
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5				S-1114
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	1.000	(7777)	1. State	Linesen.
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5				0.000

Page	: 4 of 6
Work Order	ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

ub-Matrix: SOIL Client sample ID Matrix: SOIL)			INTER LAB SPLIT	11.000 C			() 	
Client sampling date / time				31-May-2019 00:00	2000			
Compound	CAS Number	LOR	Unit	ES1917553-001	******		******	
				Result		400		200
EP075(SIM)B: Polynuclear Aromatic Hy	vdrocarbons - Cont	inued						
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5			((asse	
^ Sum of polycyclic aromatic hydrocarbons	s	0.5	mg/kg	<0.5	322			1000 C
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5		(****)	S ante	See
^ Benzo(a)pyrene TEQ (half LOR)	2002	0.5	mg/kg	0.6	-	12222	1	1
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	0207		5. 555	5.000
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10				
C10 - C14 Fraction		50	mg/kg	<50	1000	1000	Build	3 <u>9466</u>
C15 - C28 Fraction		100	mg/kg	220				
C29 - C36 Fraction		100	mg/kg	220		(ana)	17.000	Tierrer
^ C10 - C36 Fraction (sum)		50	mg/kg	440	2223	02223	21.548	24 <u>0488</u>
EP080/071: Total Recoverable Hydroca	rhons - NEPM 201	3 Eractio	ne					
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	7.055	1000	V	1
^ C6 - C10 Fraction minus BTEX	C6 C10-BTEX	10	mg/kg	<10				
(F1)								17120520
>C10 - C16 Fraction		50	mg/kg	<50	1000	122251	V. <u>222</u>	1
>C16 - C34 Fraction		100	mg/kg	360	****		S. mare	X.mms
>C34 - C40 Fraction		100	mg/kg	120			8202	82022
^ >C10 - C40 Fraction (sum)		50	mg/kg	480	< 	0.0000		
^ >C10 - C16 Fraction minus Naphthalene (F2)		50	mg/kg	<50				
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2				
Toluene	108-88-3	0.5	mg/kg	<0.5			0.000	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	****	·	0.000	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	3242	3	10000	1.000
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5		()	(1 000	(1)
^ Sum of BTEX		0.2	mg/kg	<0.2				
^ Total Xylenes	S	0.5	mg/kg	<0.5	10000	(7777)	1. Sector	Literature.
Naphthalene	91-20-3	1	mg/kg	<1		(V	
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	0.5	%	81.7			(1 <u></u>	(1999)
2-Chlorophenol-D4	93951-73-6	0.5	%	81.5	1220			
2.4.6-Tribromophenol	118-79-6	0.5	%	60.1	****		1 ****	

Page	: 5 of 6
Work Order	ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL (Matrix: SOIL)	SIL Client sample ID		INTER LAB SPLIT	2.002		82 000	0.000	
	Cli	ent samplir	g date / time	31-May-2019 00:00		10000		
Compound	CAS Number	LOR	Unit	ES1917553-001		*******		
				Result	252	<u></u>	<u>212</u>	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	104			(
Anthracene-d10	1719-06-8	0.5	%	87.2	1 2243 			
4-Terphenyl-d14	1718-51-0	0.5	%	110			Serve	S and a
EP080S: TPH(V)/BTEX Surrogates							n a state of the s	
1.2-Dichloroethane-D4	17060-07-0	0.2	%	104		(10000
Toluene-D8	2037-26-5	0.2	%	98.6	1 2006	1.000	Tana	Tiette
4-Bromofluorobenzene	460-00-4	0.2	%	76.4				

Page	: 6 of 6
Work Order	ES1917553
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compoun	d Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogate:	5		
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

CERTIFICATE OF ANALYSIS

Work Order	EM1909096	Page	1 of 5
Client	GEO-ENVIRONMENTAL SOLUTIONS	Laboratory	Environmental Division Melbourne
Contact	SARAH JOYCE	Contact	: Shirley LeCornu
Address	29 KIRKSWAY PLACE	Address	4 Westall Rd Springvale VIC Australia 3171
	BATTERY POINT TASMANIA, AUSTRALIA 7004		
Telephone	: +61 03 6223 1839	Telephone	: +6138549 9630
Project	: Building 3	Date Samples Received	: 04-Jun-2019 09:35
Order number	5	Date Analysis Commenced	: 14-Jun-2019
C-O-C number		Issue Date	20-Jun-2019 18:46
Sampler	7		HACEMRA NATA
Site	2 		
Quote number	: EN/222		The Addition of the star
No. of samples received	: 3		Accredited for compliance with
No. of samples analysed	: 3		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

RIGHT SOLUTIONS | RIGHT PARTNER

Page	: 2 of 5
Work Order	; EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

- Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting
 - * = This result is computed from individual analyte detections at or above the level of reporting
 - ø = ALS is not NATA accredited for these tests.
 - ~ = Indicates an estimated value.

Page	: 3 of 5
Work Order	: EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ant sample ID	BH01 1.4-1.5	BH07 0.5-0.6	BH03 0.5-0.6		() <u></u>
10 30 1	Clie	ent sampli	ng date / time	31-May-2019 00:00	31-May-2019 00:00	31-May-2019 00:00		
Compound	CAS Number	LOR	Unit	EM1909096-001	EM1909096-002	EM1909096-003		
5-313				Result	Result	Result		-
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		0.1	%	45.1	25.8			
EK026SF: Total CN by Segmented F	low Analyser							
Total Cyanide	57-12-5	1	mg/kg	<1	2		1	(
EN33: TCLP Leach								
Initial pH	1222	0.1	pH Unit	1000	7.1	8.0	9 <u>200</u>	10000
After HCI pH		0.1	pH Unit	(1 1111)	1.1	1.1	No.	Newson
Extraction Fluid Number	100	1	() () () () () () () () () () () () () (1	1		
Final pH		0.1	pH Unit		5.0	5.3		
EP066: Polychlorinated Biphenyls (P	CB)							
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	<0.1			
EP066S: PCB Surrogate								10
Decachlorobiphenyl	2051-24-3	0.1	%	94.4	97.7			

Page	: 4 of 5
Work Order	: EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Sub-Matrix: TCLP LEACHATE (Matrix: WATER)		Clie	nt sample ID	BH07 0.5-0.6	BH03 0.5-0.6	3 <u></u>		0.000
10 02	Cli	ent samplin	g date / time	31-May-2019 00:00	31-May-2019 00:00	(<u>2002</u>)		
Compound	CAS Number	LOR	Unit	EM1909096-002	EM1909096-003	*******		
				Result	Result	482		
EG005(ED093)C: Leachable Met	als by ICPAES							
Arsenic	7440-38-2	0.1	mg/L	-	<0.1	· · · · · ·		
Copper	7440-50-8	0.1	mg/L	0.3			2 <u>227</u>	14 <u>1111</u>

Page	5 of 5
Work Order	: EM1909096
Client	: GEO-ENVIRONMENTAL SOLUTIONS
Project	 Building 3

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)	
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	36	140